「細胞外プロテアーゼ」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
27行目: 27行目:
 1997年に二つのラボから独立して同定された比較的新しいセリンプロテアーゼである。ヒトおよびマウスの脳で、海馬と[[扁桃体]]に高発現している。免疫電子顕微鏡観察と培養マウス海馬神経細胞を用いた共焦点顕微鏡による研究からニューロトリプシンは[[プレシナプス]]終末に局在していることが示されている。ニューロトリプシンは神経活動依存的に神経細胞より分泌されて、細胞外[[プロテオリグリカン]]の一種[[アグリン]]を基質として分解する。ニューロトリプシンノックアウトマウスでは、異常な社会行動をしめし、また組織学的には海馬神経細胞で[[スパイン]]密度の減少が示された。臨床研究では、一部の[[精神遅滞]]の原因遺伝子としてニューロトリプシンが同定されている。アルジェリアの2つの家系において、ニューロトリプシン遺伝子の4塩基欠損が常染色体劣性遺伝によって受け継がれ、欠損ニューロトリプシンタンパク質となり、その結果重度の精神遅滞となることが明らかとなっている。  
 1997年に二つのラボから独立して同定された比較的新しいセリンプロテアーゼである。ヒトおよびマウスの脳で、海馬と[[扁桃体]]に高発現している。免疫電子顕微鏡観察と培養マウス海馬神経細胞を用いた共焦点顕微鏡による研究からニューロトリプシンは[[プレシナプス]]終末に局在していることが示されている。ニューロトリプシンは神経活動依存的に神経細胞より分泌されて、細胞外[[プロテオリグリカン]]の一種[[アグリン]]を基質として分解する。ニューロトリプシンノックアウトマウスでは、異常な社会行動をしめし、また組織学的には海馬神経細胞で[[スパイン]]密度の減少が示された。臨床研究では、一部の[[精神遅滞]]の原因遺伝子としてニューロトリプシンが同定されている。アルジェリアの2つの家系において、ニューロトリプシン遺伝子の4塩基欠損が常染色体劣性遺伝によって受け継がれ、欠損ニューロトリプシンタンパク質となり、その結果重度の精神遅滞となることが明らかとなっている。  


=== ニューロプシン(Neuropsin) [[Image:1NPM.jpg|thumb|300px|<b>図2.ニューロプシンの立体構造</b><br >(日本蛋白質構造データバンク (PDBj))]]  ===
=== ニューロプシン(Neuropsin) [[Image:1NPM.jpg|thumb|250px|<b>図2.ニューロプシンの立体構造</b><br />(日本蛋白質構造データバンク (PDBj))]]  ===


 ニューロプシンはトリプシン様セリンプロテアーゼとして1995年に脳で同定された。脳において、ニューロプシンは海馬CA1-3の錐体細胞と外側扁桃体の神経細胞に高発現している。海馬スライスを用いた細胞外記録で、低濃度のニューロプシン(1-2.5 nM)を還流して[[シータ刺激]]を行うと、early-phase LTP(E-LTP)の著しい増強が見られる。ニューロプシンの基質として細胞接着因子[[L1]]CAMおよび[[EphB2受容体]]が同定されており、ニューロプシンによるL1CAMの分解は、NMDA受容体依存的なシナプス活動の増強を誘導する。EphB2受容体は、ニューロプシンによって切断され一方、扁桃体においてEphB2-NMDA受容体結合を阻害することからNMDA受容体の活性化を導き、不安関連行動を増強させる。   
 ニューロプシンはトリプシン様セリンプロテアーゼとして1995年に脳で同定された。脳において、ニューロプシンは海馬CA1-3の錐体細胞と外側扁桃体の神経細胞に高発現している。海馬スライスを用いた細胞外記録で、低濃度のニューロプシン(1-2.5 nM)を還流して[[シータ刺激]]を行うと、early-phase LTP(E-LTP)の著しい増強が見られる。ニューロプシンの基質として細胞接着因子[[L1]]CAMおよび[[EphB2受容体]]が同定されており、ニューロプシンによるL1CAMの分解は、NMDA受容体依存的なシナプス活動の増強を誘導する。EphB2受容体は、ニューロプシンによって切断され一方、扁桃体においてEphB2-NMDA受容体結合を阻害することからNMDA受容体の活性化を導き、不安関連行動を増強させる。   
35行目: 35行目:
&nbsp;  
&nbsp;  


== [[Image:NP catalytic domainのコピー.jpg|thumb|133px|<b>図3.ニューロプシンの活性中心</b><br>Kishi T et al. The Journal of biological chemistry. 1999 274(7):4220-4]]メタロ(金属)プロテアーゼ(メトジンシンプロテアーゼファミリー(Metzincin protease family))  ==
== [[Image:NP catalytic domainのコピー.jpg|thumb|266px|<b>図3.ニューロプシンの活性中心</b><br />Kishi T et al. The Journal of biological chemistry. 1999 274(7):4220-4]]メタロ(金属)プロテアーゼ(メトジンシンプロテアーゼファミリー(Metzincin protease family))  ==


 マトリックスメタロプロテアーゼのスーパーファミリーとしてメトジンシンプロテアーゼファミリーと呼ばれている。[[細胞外マトリックス]]蛋白質(例えば、タイプⅠ、Ⅳ [[コラーゲン]]、[[ラミニン]]、フィブロネクチン等)を切断する。活性部位のメチオニン残基(Met)および亜鉛イオン(zinc ion)がペプチドの切断に重要である(図4,5)。  
 マトリックスメタロプロテアーゼのスーパーファミリーとしてメトジンシンプロテアーゼファミリーと呼ばれている。[[細胞外マトリックス]]蛋白質(例えば、タイプⅠ、Ⅳ [[コラーゲン]]、[[ラミニン]]、フィブロネクチン等)を切断する。活性部位のメチオニン残基(Met)および亜鉛イオン(zinc ion)がペプチドの切断に重要である(図4,5)。  
41行目: 41行目:
=== マトリックスメタロプロテアーゼ(MMP)  ===
=== マトリックスメタロプロテアーゼ(MMP)  ===


[[Image:HMMP8.jpg|thumb|300px|<b>図4.human neutrophil collagenase(MMP-8)の立体構造と活性ドメイン</b><br />(日本.蛋白質構造データバンク (PDBj))ピンクの球体が亜鉛イオン、グレーの球体がカルシウムイオン。アミノ酸側鎖はヒスチジンを示している。]] MMPはヒトで24種類、マウスで23種類の遺伝子がコードされており、分泌型と膜結合型のメンバーを含み、それらがドメイン構造に従って,コラゲナーゼ,ストロメライシン,ゼラチナーゼと膜型 MMP(MT-MMP)の4つの主なサブグループに分けられている。最近のニューロンとアストロサイトでの報告によると多くのMMPは小胞で分泌されるためのシグナルペプチドを持ち、細胞外で機能すると考えられる。しかしながら、神経細胞とグリア細胞の核でのMMP-2,9,13の存在から、細胞内でのMMPの機能も報告されている。膜結合型のMT-MMPは、フューリン(furin)あるいはプラスミンによって、ゴルジネットワーク内において、つまり細胞内で活性化され、細胞外にある間は活性があると考えられる。MMPの発現は、多くの成長因子、サイトカイン、ケモカインに[[Image:Catalytic domain.jpg|thumb|92px|<b>図5.活性中心</b><br />ピンクの球体が亜鉛イオン、グレーの球体がカルシウムイオン。アミノ酸側鎖はヒスチジンを示している。]]よって転写レベルで制御されており、また一方転写後あるいはエピジェネティクス修飾によっても調節を受けている。MMPは[[神経生理学]]に関連する細胞外マトリックスタンパク質の分解や、成長因子およびそのレセプター、あるいはサイトカインの活性化、細胞外マトリックス受容体の分解も行う。MMPのうち、MMP-2、3、9は脳内でもっとも豊富に発現している。  
[[Image:HMMP8.jpg|thumb|300px|<b>図4.human neutrophil collagenase(MMP-8)の立体構造と活性ドメイン</b><br />(日本.蛋白質構造データバンク (PDBj))<br />ピンクの球体が亜鉛イオン、グレーの球体がカルシウムイオン。アミノ酸側鎖はヒスチジンを示している。]] MMPはヒトで24種類、マウスで23種類の遺伝子がコードされており、分泌型と膜結合型のメンバーを含み、それらがドメイン構造に従って,コラゲナーゼ,ストロメライシン,ゼラチナーゼと膜型 MMP(MT-MMP)の4つの主なサブグループに分けられている。最近のニューロンとアストロサイトでの報告によると多くのMMPは小胞で分泌されるためのシグナルペプチドを持ち、細胞外で機能すると考えられる。しかしながら、神経細胞とグリア細胞の核でのMMP-2,9,13の存在から、細胞内でのMMPの機能も報告されている。膜結合型のMT-MMPは、フューリン(furin)あるいはプラスミンによって、ゴルジネットワーク内において、つまり細胞内で活性化され、細胞外にある間は活性があると考えられる。MMPの発現は、多くの成長因子、サイトカイン、ケモカインに[[Image:Catalytic domain.jpg|thumb|92px|<b>図5.活性中心</b><br />ピンクの球体が亜鉛イオン、グレーの球体がカルシウムイオン。アミノ酸側鎖はヒスチジンを示している。]]よって転写レベルで制御されており、また一方転写後あるいはエピジェネティクス修飾によっても調節を受けている。MMPは[[神経生理学]]に関連する細胞外マトリックスタンパク質の分解や、成長因子およびそのレセプター、あるいはサイトカインの活性化、細胞外マトリックス受容体の分解も行う。MMPのうち、MMP-2、3、9は脳内でもっとも豊富に発現している。  


 MMP-9は、スパインに発現するβジストログリカンとintracellular adhesion molecule(ICAM)5を基質とし、神経可塑性に関わることが報告されている。ICAM5は未成熟な[[フィロポディア]]に多く発現し、切断を受けることでスパインの成熟が進む。MMP-9によってICAM5は切断され、そのN末断片がインテグリンシグナルを介してコフィリン(cofilin)のリン酸化を誘導し、アクチンリモデリングによりスパインの拡大が引き起こされると考えられている。海馬スライスにおいて、MMP-9活性を阻害するか、あるいはMMP-9遺伝子欠損マウスを用いるとL-LTPが阻害される。MMP-9 欠損マウスでは、文脈的恐怖条件付けの行動実験の結果、海馬依存的な学習が阻害され、扁桃体依存的な学習には影響が見られなかった。  
 MMP-9は、スパインに発現するβジストログリカンとintracellular adhesion molecule(ICAM)5を基質とし、神経可塑性に関わることが報告されている。ICAM5は未成熟な[[フィロポディア]]に多く発現し、切断を受けることでスパインの成熟が進む。MMP-9によってICAM5は切断され、そのN末断片がインテグリンシグナルを介してコフィリン(cofilin)のリン酸化を誘導し、アクチンリモデリングによりスパインの拡大が引き起こされると考えられている。海馬スライスにおいて、MMP-9活性を阻害するか、あるいはMMP-9遺伝子欠損マウスを用いるとL-LTPが阻害される。MMP-9 欠損マウスでは、文脈的恐怖条件付けの行動実験の結果、海馬依存的な学習が阻害され、扁桃体依存的な学習には影響が見られなかった。  
65

回編集

案内メニュー