「逆行性伝達物質」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
 
(3人の利用者による、間の8版が非表示)
1行目: 1行目:
<div align="right"> 
<font size="+1">[http://researchmap.jp/phsyiol2 橋本谷 祐輝]</font><br>
''Albert Einstein College of Medicine, Department of Neuroscience''<br>
<font size="+1">[http://researchmap.jp/masanobukano 狩野 方伸]</font><br>
''東京大学 大学院医学系研究科 医学部''<br>
DOI:<selfdoi /> 原稿受付日:2012年7月17日 原稿完成日:2012年9月26日<br>
担当編集委員:[http://researchmap.jp/haruokasai 河西 春郎](東京大学 大学院医学系研究科)<br>
</div>
英:retrograde messengers, retrograde signals  
英:retrograde messengers, retrograde signals  


{{box|text=
 逆行性伝達物質とは[[化学シナプス]]において[[シナプス後部]]から細胞外へ放出されて、[[シナプス前終末]]に作用し[[シナプス伝達]]を調節する物質をさす(図1)。逆行性伝達物質によってシナプス後細胞はシナプス前側の活動を調節することができる。逆行性伝達物質には様々な種類があるが大別すると、[[wikipedia:ja:脂質|脂質]]、[[wikipedia:ja:気体|気体]]分子、[[神経栄養因子]]、[[ペプチド]]、古典的[[神経伝達物質]]がある。逆行性伝達物質を介した逆行性シナプス伝達は新規シナプス形成やその維持に重要な役割を担っているが、本稿では特に成熟したシナプスにおける[[シナプス可塑性]]に限定して述べる。
 逆行性伝達物質とは[[化学シナプス]]において[[シナプス後部]]から細胞外へ放出されて、[[シナプス前終末]]に作用し[[シナプス伝達]]を調節する物質をさす(図1)。逆行性伝達物質によってシナプス後細胞はシナプス前側の活動を調節することができる。逆行性伝達物質には様々な種類があるが大別すると、[[wikipedia:ja:脂質|脂質]]、[[wikipedia:ja:気体|気体]]分子、[[神経栄養因子]]、[[ペプチド]]、古典的[[神経伝達物質]]がある。逆行性伝達物質を介した逆行性シナプス伝達は新規シナプス形成やその維持に重要な役割を担っているが、本稿では特に成熟したシナプスにおける[[シナプス可塑性]]に限定して述べる。
}}
[[Image:Yukihashimotodani fig 5.jpg|thumb|right|300px|'''図1.逆行性シナプス伝達''']]  
[[Image:Yukihashimotodani fig 5.jpg|thumb|right|300px|'''図1.逆行性シナプス伝達''']]  


26行目: 38行目:
=== 気体分子  ===
=== 気体分子  ===


 [[一酸化窒素]](NO)はセカンドメッセンジャーとして働くことが知られているが、特に海馬のLTP誘導において逆行性伝達物質として働くことが報告されている<ref name="ref19"><pubmed> 8083727 </pubmed></ref><ref><pubmed> 9223222 </pubmed></ref>。[[NMDA受容体]]を介して流入した[[カルシウム]]が[[NO合成酵素]]を活性化することによって[[wikipedia:ja:L-アルギニン|L-アルギニン]]からNOがシナプス後部で作られる。細胞外へと放出されたNOはシナプス前終末の内部に入り、[[可溶性グアニル酸シクラーゼ]]を活性化し[[cGMP]]産生とそれに引き続き[[cGMP依存性プロテインキナーゼ]]の活性化を引き起こす。その結果、神経伝達物質の放出が促進される。海馬以外にも例えば[[腹側被蓋野]]<ref><pubmed> 17460674 </pubmed></ref>、[[視床下部]]<ref><pubmed> 19144839 </pubmed></ref>、[[大脳皮質]]<ref><pubmed> 16837587 </pubmed></ref>、[[脊髄]]<ref><pubmed> 22131400 </pubmed></ref>などでNOによる逆行性シナプス伝達が報告されている。  
 [[一酸化窒素]] (NO)はセカンドメッセンジャーとして働くことが知られているが、特に海馬のLTP誘導において逆行性伝達物質として働くことが報告されている<ref name="ref19"><pubmed> 8083727 </pubmed></ref><ref><pubmed> 9223222 </pubmed></ref>。[[NMDA型グルタミン酸受容体]]を介して流入した[[カルシウム]]が[[NO合成酵素]]を活性化することによってL-[[wikipedia:ja:アルギニン|アルギニン]]からNOがシナプス後部で作られる。細胞外へと放出されたNOはシナプス前終末の内部に入り、[[可溶性グアニル酸シクラーゼ]]を活性化し[[cGMP]]産生とそれに引き続き[[cGMP依存性プロテインキナーゼ]]の活性化を引き起こす。その結果、神経伝達物質の放出が促進される。海馬以外にも例えば[[腹側被蓋野]]<ref><pubmed> 17460674 </pubmed></ref>、[[視床下部]]<ref><pubmed> 19144839 </pubmed></ref>、[[大脳皮質]]<ref><pubmed> 16837587 </pubmed></ref>、[[脊髄]]<ref><pubmed> 22131400 </pubmed></ref>などでNOによる逆行性シナプス伝達が報告されている。  


 NOが順行性伝達物質としても働くことが、特に[[小脳]]の[[LTD]]でよく調べられている<ref><pubmed> 18588525 </pubmed></ref>。小脳[[プルキンエ細胞]]に入力する興奮性の[[平行線維]]終末からNOが放出され<ref><pubmed> 9032691 </pubmed></ref>シナプス後部に入り、可溶性グアニル酸シクラーゼを活性化する。その結果、cGMP/cGMP依存性プロテインキナーゼのカスケードが活性化し[[G-substrate]]を[[リン酸化]]する<ref><pubmed> 10051666 </pubmed></ref>。リン酸化したG-substrateは[[ホスファターゼ]]の[[阻害剤]]として働き、別経路で活性化された[[プロテインキナーゼC]]と合わせて、最終的に[[AMPA受容体]]のリン酸化および[[エンドサイトーシス]]を促進する方向へ向かう。  
 NOが順行性伝達物質としても働くことが、特に[[小脳]]の[[LTD]]でよく調べられている<ref><pubmed> 18588525 </pubmed></ref>。小脳[[プルキンエ細胞]]に入力する興奮性の[[平行線維]]終末からNOが放出され<ref><pubmed> 9032691 </pubmed></ref>シナプス後部に入り、可溶性グアニル酸シクラーゼを活性化する。その結果、cGMP/cGMP依存性プロテインキナーゼのカスケードが活性化し[[G-substrate]]を[[リン酸化]]する<ref><pubmed> 10051666 </pubmed></ref>。リン酸化したG-substrateは[[ホスファターゼ]]の[[阻害剤]]として働き、別経路で活性化された[[プロテインキナーゼC]]と合わせて、最終的に[[AMPA型グルタミン酸受容体]]のリン酸化および[[エンドサイトーシス]]を促進する方向へ向かう。  


 [[一酸化炭素]]も逆行性伝達物質として働くことが示唆されているが<ref><pubmed> 7682336 </pubmed></ref><ref name="ref19" />まだそれを支持する十分な証拠は揃っていない。  
 [[一酸化炭素]]も逆行性伝達物質として働くことが示唆されているが<ref><pubmed> 7682336 </pubmed></ref><ref name="ref19" />まだそれを支持する十分な証拠は揃っていない。


=== 神経栄養因子  ===
=== 神経栄養因子  ===
46行目: 58行目:
=== 古典的神経伝達物質  ===
=== 古典的神経伝達物質  ===


 グルタミン酸や[[GABA]]といった神経伝達物質が特定のシナプスでは逆行性伝達物質として働く可能性が報告されている<ref name="ref30"><pubmed> 16061520 </pubmed></ref><ref><pubmed> 19375301 </pubmed></ref>。大脳皮質では興奮性シナプスや抑制性シナプスにおいてグルタミン酸やGABAによる逆行性シナプス伝達が起こることが報告されている<ref name="ref30" />。小脳ではグルタミン酸<ref><pubmed> 15097992 </pubmed></ref>が[[脳幹]]ではGABAが<ref><pubmed> 18614034 </pubmed></ref>逆行性伝達物質として働くことが報告されている。特殊なシナプスとして[[嗅球]]の[[僧帽細胞]]と顆粒細胞間の[[dendro-dendritic結合]]でGABAによる逆行性伝達がみられる<ref><pubmed> 9581766 </pubmed></ref>。  
 グルタミン酸や[[GABA]]といった神経伝達物質が特定のシナプスでは逆行性伝達物質として働く可能性が報告されている<ref name="ref30"><pubmed> 16061520 </pubmed></ref><ref><pubmed> 19375301 </pubmed></ref>。大脳皮質では興奮性シナプスや抑制性シナプスにおいてグルタミン酸やGABAによる逆行性シナプス伝達が起こることが報告されている<ref name="ref30" />。小脳ではグルタミン酸<ref name=ref0><pubmed> 15097992 </pubmed></ref>が[[脳幹]]ではGABAが<ref><pubmed> 18614034 </pubmed></ref>逆行性伝達物質として働くことが報告されている。特殊なシナプスとして[[嗅球]]の[[僧帽細胞]]と顆粒細胞間の[[dendro-dendritic結合]]でGABAによる逆行性伝達がみられる<ref><pubmed> 9581766 </pubmed></ref>。  


 [[セロトニン]]や[[ドーパミン]]も樹状突起から放出されることが知られているが、逆行性伝達物質として働きシナプス伝達を制御しうるかどうかはまだ定かでない。  
 [[セロトニン]]や[[ドーパミン]]も樹状突起から放出されることが知られているが、逆行性伝達物質として働きシナプス伝達を制御しうるかどうかはまだ定かでない。  
52行目: 64行目:
== エンドカンナビノイドによる逆行性伝達  ==
== エンドカンナビノイドによる逆行性伝達  ==


 上記のほとんどの逆行性伝達物質が脳の限られた範囲のシナプスでのみ働くのに対して、[[エンドカンナビノイド]]による逆行性伝達は脳の非常に広い範囲で起こる。CB1受容体はシナプスによっては興奮性あるいは抑制性神経終末に発現しており、これらの入力を短期あるいは長期に抑制することで[[記憶]]・[[認知]]、[[運動制御]]、[[鎮痛]]、[[食欲]]調節、[[報酬系]]の制御、[[神経保護]]などの様々な脳機能に関与する<ref name="ref2" />。  
 上記のほとんどの逆行性伝達物質が脳の限られた範囲のシナプスでのみ働くのに対して、[[エンドカンナビノイド]]による逆行性伝達は脳の非常に広い範囲で起こる。カンナビノイド受容体にはCB1とCB2があり、CB1受容体は脳にCB2受容体は主に免疫系の細胞で発現している(CB2受容体も一部、脳での発現が認められる)。CB1受容体は興奮性ニューロンあるいは抑制性ニューロンの神経終末に発現しており、その発現パターンは脳部位によって異なる。例えば海馬では、一部の抑制性ニューロンに強く発現しており、これに比べて興奮性ニューロンには一様に低く発現している。海馬の抑制性ニューロンのうちでも、パルブアルブミン陽性バスケット細胞にはCB1受容体が存在せず、コレシストキニン陽性バスケット細胞に強く発現するといった、極めて選択的な発現パターンを示す。これらの入力を短期あるいは長期に抑制することで[[記憶]]・[[認知]]、[[運動制御]]、[[鎮痛]]、[[摂食制御の神経回路|食欲]]調節、[[報酬系]]の制御、[[神経保護]]などの様々な脳機能に関与する<ref name="ref2" />。  


=== エンドカンナビノイド産生機構  ===
=== エンドカンナビノイド産生機構  ===


 エンドカンナビノイドの一種である[[2-アラキドノイルグリセロール]](2-AG)はシナプス後部のニューロンの[[脱分極]]による[[カルシウム]]イオン流入、あるいは[[Gq/11タンパク質共役型受容体]]の活性化によって作られる(図2)。2-AGは前駆体である[[ジアシルグリセロール]](DG)から[[DGリパーゼ]](DGL)によって作られる。シナプス後ニューロンで強い脱分極が起きると[[電位依存性カルシウムチャネル]]が開いてカルシウムイオンが流入する。細胞内カルシウム濃度がマイクロモーラー以上に達すると、2-AGが産生される(図2)。また、グループI[[代謝型グルタミン酸受容体]]やM1/M3[[ムスカリン受容体]]といったGq/11タンパク質共役型受容体の活性化によって[[PLCβ]]を介する経路で2-AG産生が引き起こされる(図2)。この場合、細胞内カルシウム上昇は必要ない<ref><pubmed> 11516402 </pubmed></ref>。さらに、こういった受容体の活性化と脱分極による細胞内へのカルシウムイオン流入が同時に起こると、2-AG産生が相乗的に促進される。これは、PLCβがカルシウム感受性を持つため、[[受容体]]活性化と同時に細胞内カルシウム濃度が高まると、PLCβ活性が増強するためである<ref><pubmed> 15664177 </pubmed></ref><ref name="ref40"><pubmed> 16033892 </pubmed></ref> (図2)。  
 エンドカンナビノイドの一種である[[2-アラキドノイルグリセロール]](2-AG)はシナプス後部のニューロンの[[脱分極]]による[[カルシウム]]イオン流入、あるいは[[Gq/11タンパク質共役型受容体]]の活性化によって作られる(図2)。2-AGは前駆体である[[ジアシルグリセロール]](DG)から[[DGリパーゼ]](DGL)によって作られる。シナプス後ニューロンで強い脱分極が起きると[[電位依存性カルシウムチャネル]]が開いてカルシウムイオンが流入する。細胞内カルシウム濃度が&micro;M以上に達すると、2-AGが産生される(図2)。また、グループI[[代謝活性型グルタミン酸受容体]]やM1/M3[[ムスカリン受容体]]といったGq/11タンパク質共役型受容体の活性化によって[[ホスホリパーゼC]]βを介する経路で2-AG産生が引き起こされる(図2)。この場合、細胞内カルシウム上昇は必要ない<ref><pubmed> 11516402 </pubmed></ref>。さらに、こういった受容体の活性化と脱分極による細胞内へのカルシウムイオン流入が同時に起こると、2-AG産生が相乗的に促進される。これは、PLCβがカルシウム感受性を持つため、[[受容体]]活性化と同時に細胞内カルシウム濃度が高まると、PLCβ活性が増強するためである<ref><pubmed> 15664177 </pubmed></ref><ref name="ref40"><pubmed> 16033892 </pubmed></ref> (図2)。  


[[Image:Yukihashimotodani fig 6.jpg|thumb|right|300px|'''図2.エンドカンナビノイドによる逆行性シナプス伝達抑制'''<br>橋本谷祐輝 他:実験医学,Vol.28 No.20:3409-3414,2010より引用]]  
[[Image:Yukihashimotodani fig 6.jpg|thumb|right|300px|'''図2.エンドカンナビノイドによる逆行性シナプス伝達抑制'''<br>橋本谷祐輝 他:実験医学,Vol.28 No.20:3409-3414,2010より引用]]  
62行目: 74行目:
=== 逆行性シナプス伝達抑圧  ===
=== 逆行性シナプス伝達抑圧  ===


 上記のような刺激によって産生された2-AGは[[細胞膜]]を通って逆行性に[[シナプス前終末]]に局在する[[CB1受容体]]を活性化する。活性化したCB1受容体は共役する[[Gi/oタンパク質]]を介してシナプス前終末の電位依存性カルシウムチャネルの開口を抑制し、神経伝達物質の放出を抑制する(図2)。ニューロンの脱分極によって生じるエンドカンナビノイドによる逆行性シナプス伝達抑圧を[[depolarization-induced suppression of inhibition]]/excitation (DSI/DSE)とよぶ。脱分極したニューロンに入力する抑制性入力が抑えられる場合がDSI、興奮性入力が抑えられる場合がDSEである。単なる脱分極と違い、生理的条件に近いシナプス刺激によってエンドカンナビノイドによる短期の逆行性シナプス伝達抑圧が起こることがわかっている<ref><pubmed> 14502290 </pubmed></ref><ref><pubmed> 15564588 </pubmed></ref><ref name="ref40" />。この場合、上述のようなGq/11タンパク質共役型受容体の活性化と細胞内へのカルシウム流入の相乗効果で2-AGが作られると考えられる<ref><pubmed> 17404373 </pubmed></ref>。  
 上記のような刺激によって産生された2-AGは[[細胞膜]]を通って逆行性に[[シナプス前終末]]に局在する[[CB1受容体]]を活性化する。活性化したCB1受容体は共役する[[Gi/oタンパク質]]を介してシナプス前終末の電位依存性カルシウムチャネルの開口を抑制し、神経伝達物質の放出を抑制する(図2)。ニューロンの[[脱分極]]によって生じるエンドカンナビノイドによる逆行性シナプス伝達抑圧を[[depolarization-induced suppression of inhibition]]/excitation (DSI/DSE)とよぶ。脱分極したニューロンに入力する抑制性入力が抑えられる場合がDSI、興奮性入力が抑えられる場合がDSEである。単なる脱分極と違い、生理的条件に近いシナプス刺激によってエンドカンナビノイドによる短期の逆行性シナプス伝達抑圧が起こることがわかっている<ref><pubmed> 14502290 </pubmed></ref><ref><pubmed> 15564588 </pubmed></ref><ref name="ref40" />。この場合、上述のようなGq/11タンパク質共役型受容体の活性化と細胞内へのカルシウム流入の相乗効果で2-AGが作られると考えられる<ref><pubmed> 17404373 </pubmed></ref>。


 エンドカンナビノイドは細胞外を非常に限られた範囲でしか拡散できない。海馬では10~20μm程度しか拡散しないと考えられている。2-AGの分解酵素である[[モノアシルグリセロールリパーゼ]](MGL)はシナプス前終末に局在しており、逆行性に運ばれて来た2-AGを速やかに分解する<ref><pubmed> 17267577 </pubmed></ref>(図2) 。
 エンドカンナビノイドは細胞外を非常に限られた範囲でしか拡散できない。海馬では10~20μm程度しか拡散しないと考えられている。2-AGの分解酵素である[[モノアシルグリセロールリパーゼ]](MGL)はシナプス前終末に局在しており、逆行性に運ばれて来た2-AGを速やかに分解する<ref><pubmed> 17267577 </pubmed></ref>(図2) 。


=== LTD  ===
 エンドカンナビノイドには代表的なものとして2-AG以外にもアナンダミドがある。2-AGが様々なシナプスにおいて逆行性伝達物質として普遍的に働くのに対してアナンダミドは限られたシナプスにおいてのみ逆行性伝達物質として働くと考えられている。
 
===長期抑圧現象===
 
 エンドカンナビノイドは[[長期抑圧現象]] (LTD)の誘導にも寄与する。興奮性シナプスでみられるエンドカンナビノイド依存性のLTDは、背側線条体、大脳皮質、[[側坐核]]、小脳、海馬、背側[[蝸牛神経核]]などで報告されている。一方、抑制性シナプスでは、扁桃体、海馬、大脳皮質、腹側[[被蓋野]]などで報告がある。


 エンドカンナビノイドはLTDの誘導にも寄与する。興奮性シナプスでみられるエンドカンナビノイド依存性のLTDは、背側線条体、大脳皮質、[[側坐核]]、小脳、海馬、背側[[蝸牛神経核]]などで報告されている。一方、抑制性シナプスでは、扁桃体、海馬、大脳皮質、腹側[[被蓋野]]などで報告がある。
 エンドカンナビノイド依存性のLTD(eCB-LTD)誘導にはLTD誘発刺激中にエンドカンナビノイドが産生されてシナプス前終末のCB1受容体が活性化されることが必要である。海馬ではCB1受容体が5-10分間、活性化されることがLTD誘導に必須であることが示されており、LTDの維持にはCB1受容体活性は不要となる<ref><pubmed> 12741992 </pubmed></ref>。LTD誘発刺激条件は脳部位によって様々であるがシナプス後部ニューロンへのカルシウムイオン流入あるいはグループI代謝活性型グルタミン酸受容体の活性化を介してエンドカンナビノイド産生が引き起こされることが明らかになっている <ref name="ref50"><pubmed> 19575681 </pubmed></ref>。エンドカンナビノイドは興奮性シナプスで作られるので、抑制性シナプスで起こるeCB-LTDは異シナプス的に誘導されるLTDである。小脳を除いて、eCB-LTDの発現は、これまですべてシナプス前性の可塑的変化によることが示されている。しかし数分間のCB1受容体の活性化がどのようにして長期の神経伝達物質放出の抑制を誘導するのかについてはまだよくわかっていない。海馬においてはシナプス前終末における[[RIM1α]]の作用と、カルシウムイオン流入による[[カルシニューリン]]の活性化が必須であることが示されている<ref name="ref50" />。


 エンドカンナビノイド依存性のLTD(eCB-LTD)誘導にはLTD誘発刺激中にエンドカンナビノイドが産生されてシナプス前終末のCB1受容体が活性化されることが必要である。海馬ではCB1受容体が5-10分間、活性化されることがLTD誘導に必須であることが示されており、LTDの維持にはCB1受容体活性は不要となる<ref><pubmed> 12741992 </pubmed></ref>。LTD誘発刺激条件は脳部位によって様々であるがシナプス後部ニューロンへのカルシウムイオン流入あるいはグループI代謝型グルタミン酸受容体の活性化を介してエンドカンナビノイド産生が引き起こされることが明らかになっている <ref name="ref50"><pubmed> 19575681 </pubmed></ref>。エンドカンナビノイドは興奮性シナプスで作られるので、抑制性シナプスで起こるeCB-LTDは異シナプス的に誘導されるLTDである。小脳を除いて、eCB-LTDの発現は、これまですべてシナプス前性の可塑的変化によることが示されている。しかし数分間のCB1受容体の活性化がどのようにして長期の神経伝達物質放出の抑制を誘導するのかについてはまだよくわかっていない。海馬においてはシナプス前終末における[[RIM1α]]の作用と、カルシウムイオン流入による[[カルシニューリン]]の活性化が必須であることが示されている<ref name="ref50" />。  
 同じシナプス後細胞へのカルシウムイオン流入でもエンドカンナビノイド依存性のLTD以外にもLTPなどのシナプス可塑性が引き起こされる。どのようにしてこれらのシナプス可塑性が選択的に引き起こされるのかに関してはほとんどわかっていない。少なくとも大脳皮質のスパイクタイミング依存性のLTP/LTDでは選択的に起こるようである。プレーポストの順番で刺激されるとNMDA受容体が働きLTPが誘導され、逆の順番ではグループI代謝活性型グルタミン酸受容体が強く活性化され上述のPLCβ活性の相乗効果でエンドカンナビノイドが作られLTDが誘導される<ref><pubmed>17065442</pubmed></ref>。また背側蝸牛神経核ではLTPとエンドカンナビノイド依存性のLTDが同時に起こるがLTPがマスクされ結果LTDが観察されるといった実験結果もある<ref><pubmed>17442249</pubmed></ref>。一方、小脳ではプルキンエ細胞の脱分極でDSEと他の可塑性が時間差をおいて引き起こされることが報告されている<ref name=ref0><pubmed>15097992</pubmed></ref>。


== 参考文献  ==
== 参考文献  ==


<references />
<references />
(執筆者:橋本谷祐輝、狩野方伸 担当編集委員:河西春郎)