「低親和性神経成長因子受容体」の版間の差分

編集の要約なし
編集の要約なし
 
(3人の利用者による、間の6版が非表示)
2行目: 2行目:
<font size="+1">藤田 幸、[http://researchmap.jp/ToshihideYamashita 山下 俊英]</font><br>
<font size="+1">藤田 幸、[http://researchmap.jp/ToshihideYamashita 山下 俊英]</font><br>
''大阪大学 大学院医学系研究科分子神経科学 分子神経科学''<br>
''大阪大学 大学院医学系研究科分子神経科学 分子神経科学''<br>
DOI [[XXXX]]/XXXX 原稿受付日:2012年12月4日 原稿完成日:2014年月日<br>
DOI:<selfdoi /> 原稿受付日:2012年12月4日 原稿完成日:2014年3月13日<br>
担当編集委員:[http://researchmap.jp/fujiomurakami 村上 富士夫](大阪大学 大学院生命機能研究科)<br>
担当編集委員:[http://researchmap.jp/fujiomurakami 村上 富士夫](大阪大学 大学院生命機能研究科)<br>
</div>
</div>
8行目: 8行目:
{{PBB|geneid=4804}}
{{PBB|geneid=4804}}
英語名: Low-affinity nerve growth factor receptor 独:Nervenwachstumsfaktor-Rezeptor mit niedriger Affinität<br>
英語名: Low-affinity nerve growth factor receptor 独:Nervenwachstumsfaktor-Rezeptor mit niedriger Affinität<br>
同義語:低親和性神経栄養因子受容体、p75、p75<sup>NTR</sup>
同義語:低親和性神経栄養因子受容体、p75、p75<sup>NTR</sup>


17行目: 18行目:


==低親和性神経成長因子受容体とは==
==低親和性神経成長因子受容体とは==
 低親和性神経成長因子受容体 ([[p75]])は、Johnsonらにより、神経栄養因子NGF(編集コメント:NGFというと神経成長因子の方が適当ではないでしょうか)の受容体として配列が同定された <ref name=ref2><pubmed> 3022937 </pubmed></ref>。神経栄養因子とは、神経系において[[細胞増殖]]や[[分化]]の調節といった神経栄養作用を示す、構造や遺伝子配列の類似した液性因子である。哺乳類には、NGF、BDNF、NT-3、NT-4/5の4種類の神経栄養因子が存在し、Trkとp75の2種類の受容体を介して、神経系の細胞生存、[[細胞死]]、[[細胞増殖|増殖]]、[[細胞分化|分化]]、[[軸索]]伸長といった多彩な作用を発揮する。Trk受容体には[[TrkA]]、[[TrkB]]、[[TrkC]]があり、各々の神経栄養因子は、特異的なTrk受容体に結合する。p75は全ての神経栄養因子と低親和性 (Kd = 10<sup>-9</sup> M)に結合する (図2)。多くの神経系の細胞において、p75はTrk受容体と共発現しており、リガンド依存性にも、非依存性にもTrk受容体と結合する。p75はTrk受容体とのヘテロ二量体の形成により、神経栄養因子と高親和性(Kd = 10<sup>-11</sup> M)に結合するようになると考えられている。
 低親和性神経成長因子受容体 ([[p75]])は、Johnsonらにより、神経成長因子NGFの受容体として配列が同定された <ref name=ref2><pubmed> 3022937 </pubmed></ref>。神経栄養因子とは、神経系において[[細胞増殖]]や[[分化]]の調節といった神経栄養作用を示す、構造や遺伝子配列の類似した液性因子である。哺乳類には、NGF、BDNF、NT-3、NT-4/5の4種類の神経栄養因子が存在し、Trkとp75の2種類の受容体を介して、神経系の細胞生存、[[細胞死]]、[[細胞増殖|増殖]]、[[細胞分化|分化]]、[[軸索]]伸長といった多彩な作用を発揮する。Trk受容体には[[TrkA]]、[[TrkB]]、[[TrkC]]があり、各々の神経栄養因子は、特異的なTrk受容体に結合する。p75は全ての神経栄養因子と低親和性 (Kd = 10<sup>-9</sup> M)に結合する (図2)。多くの神経系の細胞において、p75はTrk受容体と共発現しており、リガンド依存性にも、非依存性にもTrk受容体と結合する。p75はTrk受容体とのヘテロ二量体の形成により、神経栄養因子と高親和性(Kd = 10<sup>-11</sup> M)に結合するようになると考えられている。


 一方、神経栄養因子は前駆体から合成される。神経栄養因子前駆体(編集コメント:proNGFの事でしょうか?あるいはPreproNGF?)が、[[トランスゴルジネットワーク]]で転換酵素による切断を受けて、C末側から活性型神経栄養因子を生じる。神経栄養因子前駆体は、細胞外に[[分泌]]される神経栄養因子のうち40~60%を占めることから、それ自体が生理作用を有すると考えられており、[[proNGF]]が[[交感神経]]細胞や[[オリゴデンドロサイト]]などのp75を発現する細胞において、細胞死を誘導することが示された。p75は神経栄養因子前駆体と高親和性 (Kd = ~2x10<sup>-10</sup> M)に結合し、細胞死を誘導する。一方、Trk受容体は神経栄養因子前駆体に対して、低親和性 (Kd = ~2x10<sup>-8</sup> M)である <ref name=ref3><pubmed> 11729324 </pubmed></ref>。  
 一方、神経栄養因子は前駆体から合成される。神経栄養因子前駆体proNGFが、[[トランスゴルジネットワーク]]で転換酵素による切断を受けて、C末側から活性型神経栄養因子を生じる。神経栄養因子前駆体は、細胞外に[[分泌]]される神経栄養因子のうち40~60%を占めることから、それ自体が生理作用を有すると考えられており、[[proNGF]]が[[交感神経]]細胞や[[オリゴデンドロサイト]]などのp75を発現する細胞において、細胞死を誘導することが示された。p75は神経栄養因子前駆体と高親和性 (Kd = ~2x10<sup>-10</sup> M)に結合し、細胞死を誘導する。一方、Trk受容体は神経栄養因子前駆体に対して、低親和性 (Kd = ~2x10<sup>-8</sup> M)である <ref name=ref3><pubmed> 11729324 </pubmed></ref>。  


==構造==
==構造==
 p75は、細胞外に神経栄養因子との結合に関与する4つのcysteine-rich repeatを有し、細胞内にJuxtamembrane domainと6つの[[wikipedia:ja:αヘリックス|α-helical]] domainからなる[[Death domain]]を有する (図1)。TrkAとNGFは対照的な2:2の結合が知られていたが、p75とNGFは1:2で結合する。これは、p75との結合により、NGF二量体のうち、p75との非結合部位で立体構造変化が起こり、2つ目のp75との結合が阻害されるためである。p75の単量体がアポトーシスを誘導し、二量体化するとアポトーシス誘導作用が阻害されることが報告されているが、一つのモデルとして、神経栄養因子によるp75二量体の解離が、p75の活性化を引き起こすという説明がなされている。
 p75は、細胞外に神経栄養因子との結合に関与する4つのcysteine-rich repeatを有し、細胞内にJuxtamembrane domainと6つの[[wikipedia:ja:αヘリックス|α-helical]] domainからなる[[Death domain]]を有する ('''図1''')。TrkAとNGFは対照的な2:2の結合が知られていたが、p75とNGFは1:2で結合する。これは、p75との結合により、NGF二量体のうち、p75との非結合部位で立体構造変化が起こり、2つ目のp75との結合が阻害されるためである。p75の単量体がアポトーシスを誘導し、二量体化するとアポトーシス誘導作用が阻害されることが報告されているが、一つのモデルとして、神経栄養因子によるp75二量体の解離が、p75の活性化を引き起こすという説明がなされている。


==ファミリー==
==ファミリー==
39行目: 40行目:


=== 細胞死誘導===
=== 細胞死誘導===
====ニューロトロフィンと細胞死====
====神経栄養因子と細胞死====
 p75は細胞内にdeath domainを有することから、細胞死を誘導する。当初、p75の強制発現により、細胞死が誘導され、NGF投与により抑制されることが示された。研究が進み、p75は神経栄養因子との結合によっても、細胞死を誘導することが示された。培養[[オリゴデンドロサイト]]はp75を発現しており、培養液中にNGFを添加すると細胞死が誘導される <ref name=ref4><pubmed> 8878481 </pubmed></ref>。In vivoの実験において、最初にp75を介したリガンド依存性の細胞死が示されたのは、発生期の[[wikipedia:ja:鳥類|鳥類]][[網膜]]神経細胞である <ref><pubmed> 8774880 </pubmed></ref>。中和[[wikipedia:ja:抗体|抗体]]を用いてNGFやp75の活性を阻害すると、[[プログラム細胞死]]が抑制されたことから、内在性のNGFが網膜神経細胞死におけるプログラム細胞死を誘導することが示された。
 p75は細胞内にdeath domainを有することから、細胞死を誘導する。当初、p75の強制発現により、細胞死が誘導され、NGF投与により抑制されることが示された。研究が進み、p75は神経栄養因子との結合によっても、細胞死を誘導することが示された。培養[[オリゴデンドロサイト]]はp75を発現しており、培養液中にNGFを添加すると細胞死が誘導される <ref name=ref4><pubmed> 8878481 </pubmed></ref>。In vivoの実験において、最初にp75を介したリガンド依存性の細胞死が示されたのは、発生期の[[wikipedia:ja:鳥類|鳥類]][[網膜]]神経細胞である <ref><pubmed> 8774880 </pubmed></ref>。中和[[wikipedia:ja:抗体|抗体]]を用いてNGFやp75の活性を阻害すると、[[プログラム細胞死]]が抑制されたことから、内在性のNGFが網膜神経細胞死におけるプログラム細胞死を誘導することが示された。


97行目: 98行目:
| '''リガンド'''<br>Neurotrophins||細胞死誘導/細胞生存||<ref name=ref101><pubmed>8332899</pubmed></ref>
| '''リガンド'''<br>Neurotrophins||細胞死誘導/細胞生存||<ref name=ref101><pubmed>8332899</pubmed></ref>
|-
|-
| '''膜貫通タンパク質'''<br>Trks||細胞死誘導/細胞生存||<ref name=ref102><pubmed>9927421</pubmed></ref>
| '''膜貫通タンパク質'''<br>Trks||細胞死誘導/細胞生存||<ref name=ref1022><pubmed>9927421</pubmed></ref>
|-
|-
| '''アダプタータンパク質'''<br>NRIF<br>NADE<br>NRAGE/MAGE-D1<br>TRAFs||細胞死||<ref name=ref103><pubmed>11750124</pubmed></ref> <ref name=ref10545116><pubmed>10545116</pubmed></ref> <ref name=ref105><pubmed>10764727</pubmed></ref> <ref name=ref106><pubmed>10985348</pubmed></ref> <ref name=ref107><pubmed>10514511</pubmed></ref>
| '''アダプタータンパク質'''<br>NRIF<br>NADE<br>NRAGE/MAGE-D1<br>TRAFs||細胞死||<ref name=ref103><pubmed>11750124</pubmed></ref> <ref name=ref10545116><pubmed>10545116</pubmed></ref> <ref name=ref105><pubmed>10764727</pubmed></ref> <ref name=ref106><pubmed>10985348</pubmed></ref> <ref name=ref107><pubmed>10514511</pubmed></ref>
111行目: 112行目:
 [[筋萎縮性側索硬化症]] ([[amyotrophic lateral sclerosis]], [[ALS]])患者では、頸髄運動神経でp75の発現上昇が報告されている。また、ALSモデルマウスである[[SOD1]]変異マウスでは、腰髄運動神経におけるp75の発現が上昇している <ref><pubmed> 11771768 </pubmed></ref>。このマウスは、生後4ヶ月で死亡する。
 [[筋萎縮性側索硬化症]] ([[amyotrophic lateral sclerosis]], [[ALS]])患者では、頸髄運動神経でp75の発現上昇が報告されている。また、ALSモデルマウスである[[SOD1]]変異マウスでは、腰髄運動神経におけるp75の発現が上昇している <ref><pubmed> 11771768 </pubmed></ref>。このマウスは、生後4ヶ月で死亡する。


 [[ピロカルピン]]投与によるてんかんモデル動物では、[[海馬]]、[[梨状葉]]、[[内嗅皮質]]において、p75の発現上昇と、これに関連した神経細胞死が確認されている。
 [[ピロカルピン]]投与によるてんかん[[モデル動物]]では、[[海馬]]、[[梨状葉]]、[[内嗅皮質]]において、p75の発現上昇と、これに関連した神経細胞死が確認されている。


 [[皮質脊髄路]]の神経細胞において、軸索切断3日後、p75の発現が上昇する。これは、細胞死が起こるタイミングと一致する。NT-3抗体の投与により細胞死が抑制されることから、内在性のNT-3によるp75の活性化が細胞死を誘導することが示されている。
 [[皮質脊髄路]]の神経細胞において、軸索切断3日後、p75の発現が上昇する。これは、細胞死が起こるタイミングと一致する。NT-3抗体の投与により細胞死が抑制されることから、内在性のNT-3によるp75の活性化が細胞死を誘導することが示されている。