「コンドロイチン硫酸プロテオグリカン」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
5行目: 5行目:
 他方、CSは抑制性の効果ばかりではなく、異なる神経細胞にたいして多様な効果を示すことが報告されている。たとえば、CSは培養下の海馬神経細胞の神経突起伸長を促進し(Challacombe and Elam, 1997; Clement et al., 1998; Clement et al. 1999; Faissner et al., 1994; Fernaud-Espinosa et al., 1994; Nadanaka et al., 1998)、ラットの網膜神経節細胞に対して標的由来栄養因子として機能することも報告されている(Huxlin et al., 1995)。マウスの一次視覚野における神経回路の可塑性におよぼすCSの効果が示されている(Lander et al., 1997; Pizzorusso et al., 2002; Pizzorusso et al., 2006; Carulli et al., 2010)。これらのことはCSPGまたはCSは一つの分子エンティティーではあるが、その中には異なった機能特異性を有する多様な分子が含まれていることを示唆している。  
 他方、CSは抑制性の効果ばかりではなく、異なる神経細胞にたいして多様な効果を示すことが報告されている。たとえば、CSは培養下の海馬神経細胞の神経突起伸長を促進し(Challacombe and Elam, 1997; Clement et al., 1998; Clement et al. 1999; Faissner et al., 1994; Fernaud-Espinosa et al., 1994; Nadanaka et al., 1998)、ラットの網膜神経節細胞に対して標的由来栄養因子として機能することも報告されている(Huxlin et al., 1995)。マウスの一次視覚野における神経回路の可塑性におよぼすCSの効果が示されている(Lander et al., 1997; Pizzorusso et al., 2002; Pizzorusso et al., 2006; Carulli et al., 2010)。これらのことはCSPGまたはCSは一つの分子エンティティーではあるが、その中には異なった機能特異性を有する多様な分子が含まれていることを示唆している。  


 このような多様な機能はCSが構造多様性を示すこと関係があるかもしれない。CSの二糖ユニット(GlcA-GalNAc)の上の様々な位置に硫酸基の負荷が行われる結果、多様なユニットが形成されることが知られている。それらはアルファベットを冠してO-, A-, B-, C-, D-, E-unitなどと呼ばれ、これらのユニットが組み合わされてCS鎖の構造多様性が生み出される[O-unit (GlcA-GalNAc), A-unit (GlcA-GalNAc4S), C-unit (GlcA-GalNAc6S), D-unit (GlcA2S-GalNAc6S), E-unit (GlcA-GalNAc4S6S)](図1)。CSのユニット組成の違いが神経突起の伸長や、大脳皮質の層形成に異なった効果を有することが報告されているが、どの様なレベルの構造多様性がどの様に神経細胞の振る舞いに影響を与えているかという機構については不明の点が多い。近年の研究は細胞が特定のCSの構造を識別していることを示唆している(Clement et al., 1998; Nadanaka et al., 1998; Oohira et al., 2000; Ueoka et al., 2000; Gilbert et al., 2005; Properzi et al., 2005)。CS結合タンパク質が8糖(4 units)や10糖(5 units)の長さにわたる特定のユニット配列を特異的に認識することが報告されており、従来に想定されていたようなCS鎖全体の長さや負の荷電量が非特異的に影響を与えているのではないと考えられるようになった(Blanchard et al., 2007; Deepa et al., 2007a; Deepa et al., 2007b; Pothacharoen et al., 2007; Numakura et al., 2010)。これらの報告は細胞表面のCSの構造多様性を認識する受容体の探索という分野を導くこととなった。近年報告されたtransmembrane protein tyrosine phosphatase (PTPσ)とcontactin-1はCS特異的な受容体の候補分子として注目を集めている(Mikami et al., 2009; Shen et al., 2009; Coles et al., 2011)。  
 このような多様な機能はCSが構造多様性を示すこと関係があるかもしれない。CSの二糖ユニット(GlcA-GalNAc)の上の様々な位置に硫酸基の負荷が行われる結果、多様なユニットが形成されることが知られている。それらはアルファベットを冠してO-, A-, B-, C-, D-, E-unitなどと呼ばれ、これらのユニットが組み合わされてCS鎖の構造多様性が生み出される[O-unit (GlcA-GalNAc), A-unit (GlcA-GalNAc4S), C-unit (GlcA-GalNAc6S), D-unit (GlcA2S-GalNAc6S), E-unit (GlcA-GalNAc4S6S)](図1)。[[Image:CSunit.jpg]]
 
 CSのユニット組成の違いが神経突起の伸長や、大脳皮質の層形成に異なった効果を有することが報告されているが、どの様なレベルの構造多様性がどの様に神経細胞の振る舞いに影響を与えているかという機構については不明の点が多い。近年の研究は細胞が特定のCSの構造を識別していることを示唆している(Clement et al., 1998; Nadanaka et al., 1998; Oohira et al., 2000; Ueoka et al., 2000; Gilbert et al., 2005; Properzi et al., 2005)。CS結合タンパク質が8糖(4 units)や10糖(5 units)の長さにわたる特定のユニット配列を特異的に認識することが報告されており、従来に想定されていたようなCS鎖全体の長さや負の荷電量が非特異的に影響を与えているのではないと考えられるようになった(Blanchard et al., 2007; Deepa et al., 2007a; Deepa et al., 2007b; Pothacharoen et al., 2007; Numakura et al., 2010)。これらの報告は細胞表面のCSの構造多様性を認識する受容体の探索という分野を導くこととなった。近年報告されたtransmembrane protein tyrosine phosphatase (PTPσ)とcontactin-1はCS特異的な受容体の候補分子として注目を集めている(Mikami et al., 2009; Shen et al., 2009; Coles et al., 2011)。  
20

回編集