Depolarization-induced suppression of inhibition

提供:脳科学辞典
2012年7月17日 (火) 07:09時点におけるYukihashimotodani (トーク | 投稿記録)による版 (ページの作成:「DSIとはニューロンが脱分極したときに、そのニューロンに入力している抑制性シナプス応答が一過性(1〜2分間程度)に抑制...」)

(差分) ← 古い版 | 承認済み版 (差分) | 最新版 (差分) | 新しい版 → (差分)
ナビゲーションに移動 検索に移動

DSIとはニューロンが脱分極したときに、そのニューロンに入力している抑制性シナプス応答が一過性(1〜2分間程度)に抑制される現象をいう(図1)。同じ現象が興奮性シナプスで起こる場合、depolarization-induced suppression of excitation (DSE)と呼ぶ。エンドカンナビノイド(内因性カンナビノイド)が担う逆行性シナプス伝達の一種である。DSI/DSEのメカニズムは以下のとおりである。脱分極による細胞内へのカルシウムイオン流入によってエンドカンナビノイドの一種である2-アラキドノイルグリセロール(2-AG)が産生される。シナプス後部でつくられた2-AGは細胞外へ放出され、シナプス間隙を逆行しシナプス前終末に局在するカンナビノイド受容体I型(CB1)に結合し活性化する。CB1受容体の活性化によって神経伝達物質の放出が一過性に抑制される。DSI及びDSEの発生条件として、そのニューロンに2-AGを産生する能力(2-AG合成酵素の有無)があり、かつ入力するシナプス前終末にCB1受容体が存在することが必要である。脳の広範囲のシナプスにおいてDSIやDSEが引き起こされることが知られている。

歴史

DSIは1991年に小脳で最初に報告された。小脳のプルキンエ細胞を脱分極させると一過性にプルキンエ細胞で記録される抑制性入力であるGABA応答が抑制されることが報告された(Llano et al., 1991)。翌1992年には海馬CA1野の錐体細胞を脱分極させると小脳と同様に一過性にGABA応答が抑制されることが報告された(Pitler and Alger, 1992)。この二つの研究およびその後の研究からDSIはシナプス後部のニューロンの細胞内カルシウムイオン濃度上昇により誘導され、最終的にはシナプス前終末からのGABAの放出が抑制される現象であることが明らかになった。したがってシナプス後部ニューロンから何らかの逆行性伝達物質が放出されて、それがシナプス前部に作用することが予想された。

逆行性伝達物質の発見

DSIの発見からおよそ10年の年月を経た2001年にようやく逆行性伝達物質の正体が突き止められた。同時に3つの独立した研究グループからエンドカンナビノイドが逆行性伝達物質であることが報告された(Kreitzer and Regehr, 2001a; Ohno-Shosaku et al., 2001; Wilson and Nicoll, 2001)。そのうちの2つのグループは海馬のDSIにおいてエンドカンナビノイドが逆行性伝達物質であることを明らかにした(Ohno-Shosaku et al., 2001; Wilson and Nicoll, 2001)。残りのグループは小脳においてDSIと同様の現象が興奮性シナプスで起こることを初めて報告しDSEと命名した(Kreitzer and Regehr, 2001a)。このDSEもエンドカンナビノイドによって担われることが明らかになった。DSIの最初の報告であった小脳のDSIもエンドカンナビノイドが逆行性伝達物質であることがわかった(Kreitzer and Regehr, 2001b; Yoshida et al., 2002)。以降現在までに、海馬、小脳、線条体、大脳皮質、扁桃体、脳幹など脳の様々な部位でDSIやDSEが起こることが報告されている(Kano et al., 2009)。

2−アラキドノイルグリセロール

エンドカンナビノイドはカンナビノイド受容体に対するリガンドの総称で、複数存在する。その中でも2-AGがDSIおよびDSEを仲介する逆行性伝達物質として働く。2-AGは膜のリン脂質から2つの酵素反応によって生成される。ホスホリパーゼC(PLC)活性の産物であるジアシルグリセロール(DG)が前駆体となり、ジアシルグリセロールリパーゼ(DGL)による加水分解で2-AGが作られる。DGLを薬理的に阻害するとDSI/DSEがブロックされる。ただしDGLの薬理的阻害がDSI/DSEに影響しないという報告もある。しかし、αとβの2つのサブタイプを有するDGLのうちDGLαノックアウトマウスで海馬、小脳、線条体、扁桃体、前頭前野皮質という5つの異なった脳部位でDSIあるいはDSEが消失することが報告され(Gao et al., 2010; Tanimura et al., 2010; Uchigashima et al., 2011; Yoshida et al., 2011; Yoshino et al., 2011)、DSIに DGLαが必須であることが確立した。さらに2-AGの分解酵素であるモノアシルグリセロールリパーゼを薬理的あるいは遺伝子欠損によって阻害するとDSI/DSEの持続時間が遷延する(Hashimotodani et al., 2007b; Pan et al., 2011)。これらの結果から2-AGが逆行性伝達物質であることは疑いの余地がなくなっている。

メカニズム

現在明らかにされているDSIのメカニズムは次の通りである(図2)。脱分極による細胞内へのカルシウムイオン流入が引き金となって細胞膜のリン脂質からDGが産生される。DGはDGLによって加水分解され2-AGが作られる。2-AGは細胞膜を通って細胞外へと放出され、シナプス前終末に局在するCB1受容体を活性化する。Gi/oタンパク質共役型受容体であるCB1受容体の活性化はGi/oタンパク質を介してカルシウムチャネルを抑制する。その結果、神経伝達物質の放出が抑制される。脱分極によるカルシウムイオン流入からどのようにしてDGが作られるのかはまだ明らかでない。

Gq/11共役型受容体活性化による、いわゆる「DSIの促進」

グループI代謝型グルタミン酸受容体やM1/M3ムスカリン受容体のアゴニスト存在下でニューロンを脱分極させると、一見、DSI(あるいはDSE)が促進される(Kano et al., 2009)。すなわち弱い脱分極でも現象として、大きなDSIを引き起こすことができる。この現象のメカニズムとして、以下のことが明らかになっている。グループI代謝型グルタミン酸受容体やM1/M3ムスカリン受容体といったGq/11タンパク質共役型受容体はPLCβを活性化する。PLCβがカルシウム感受性を持つため、受容体活性化に加えて脱分極による細胞内カルシウム流入が生じると、PLCβ活性が増強し2-AGの前駆体であるDG産生が促進される。結果、2-AGが効率よく作られ、現象として、DSIが起きやすくなるように見える(Hashimotodani et al., 2005; Maejima et al., 2005)。 上記の「DSIの促進」という表現は、分子機構を考慮に入れると、正しい表現ではない。神経細胞の強い脱分極だけで生ずるDSI/DSEは、PLCβを欠損するマウスでも全く影響されないことが分かっており(Hashimotodani et al., 2005; Maejima et al., 2005)、PLCβ以外のPLCか、または別の分子を介するものと考えられている。厳密には、「DSIの促進」ではなく「Gq/11共役型受容体活性化による2-AGを介する逆行性シナプス伝達抑圧の、細胞内カルシウム上昇による促進」である。多くの論文において、このような重要な点を無視し、安易に「DSIの促進」という表現が使われているので、注意が必要である。 分子メカニズムは異なるとはいえ、現象としての「DSIの促進」は機能的に重要な役割を担っていると考えられる。例えば、線条体ではアセチルコリン作動性抑制性ニューロンの発火によって恒常的に細胞外にアセチルコリンが存在する。そのため中型有棘神経細胞のシナプスではM1ムスカリン受容体が慢性的に活性化されており弱い脱分極でもDSIが引き起こされる(Narushima et al., 2007)。

DSIの伝播

エンドカンナビノイドの細胞外での拡散範囲は非常に限られている。したがって、DSIは脱分極した細胞のごく近傍の細胞にしか及ばない。例えば海馬CA1錐体細胞のDSIでは脱分極した細胞からの距離が20 μm以内であれば脱分極していない細胞でもDSIが起こる(Wilson and Nicoll, 2001)。   小脳では間接的なメカニズムによって遠くまでDSIの伝播が起こりうる。脱分極によってプルキンエ細胞から放出されたエンドカンナビノイドが、近傍の抑制性ニューロンのCB1受容体を活性化する。内向き整流性カリウムチャネルがCB1受容体の下流にあり、このカリウムチャネルの活性化によって抑制性ニューロンの発火が抑えられる。その結果、発火が抑えられた抑制性ニューロンが投射している多くのプルキンエ細胞において入力が抑制される(Kreitzer et al., 2002)。

生理的役割

DSI/DSEはネガティブフィードバックとして働き局所回路においてシナプス伝達を制御すると考えられる。短期のシナプス可塑性であるDSIは神経回路の計算論的観点からも注目されている(Abbott and Regehr, 2004)。またDSIがメタ可塑性に関わることが示唆されている。海馬CA1において閾値以下のテタヌス刺激では長期増強(LTP)を引き起こさないような場合でもテタヌス刺激に先行してDSIを誘導させると次に来る閾値以下であった刺激でもLTPが誘導されることが報告されている(Carlson et al., 2002)。DSIによる脱抑制が原因であると考えられる。

  DSIおよびDSEを誘導するには細胞内のカルシウム濃度がマイクロモーラーレベルにまで達しなければならない。実際に生理的条件下でそのように大きなカルシウム濃度上昇を引き起こすほどニューロンが長時間脱分極するかどうかは疑わしい。したがってDSIが生理的な現象であることを疑問視する報告もある(Hampson et al., 2003)。しかし一方で、小脳プルキンエ細胞や背側蝸牛神経核にあるCartwheel細胞の持続的な発火によるマイクロモーラー以下のカルシウム濃度上昇でもDSIまたはDSEが起こることからDSI/DSEが生理的現象である可能性も示唆されている(Brenowitz et al., 2006; Sedlacek et al., 2011)。エンドカンナビノイドはDSIのような細胞内カルシウム濃度上昇だけでなく、グループI代謝型グルタミン酸受容体といったGq/11タンパク質共役型受容体の活性化によっても産生・放出される(Maejima et al., 2001)。さらに前述のいわゆる「DSIの促進効果」により弱い脱分極でもGq/11タンパク質共役型受容体の活性化と組合わさると、効率よく逆行性シナプス伝達抑制が引き起こされる。したがって生理的条件下ではDSIが単独で起こるよりもGq/11タンパク質共役型受容体の活性化を伴った神経活動によってエンドカンナビノイドによる逆行性シナプス伝達抑制が引き起こされると考えられる(Hashimotodani et al., 2007a)。生理的役割とは別にDSI/DSEは着目するシナプスにおいて、エンドカンナビノイドによる逆行性シナプス伝達抑制を誘導する能力(シナプス後部にDGLが存在し、シナプス前終末にCB1受容体が存在する)があるかどうかを試すプロトコールとしても用いられる。