「受容野」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
71行目: 71行目:
[[Image:V1ComplexRF.png|thumb|350px|'''図3 複雑型細胞の受容野とその内部モデル'''<br /> A. 複雑型細胞の受容野の模式図。上に2次元構造、下に1次元断面図を示す。複雑型細胞ではON領域とOFF領域が重なりあっている。B. 複雑型細胞の受容野の内部モデル。右のCが複雑型細胞を模した出力ユニット(エネルギーユニットという)を表す。このモデルでは、単純型細胞を模した4つのサブユニット(S1, S2, S3, S4) からの出力が収斂することでCの出力が形成される。各サブユニットは、共通の方位、空間周波数と、90度ずつ位相のずれたガボールフィルターをもち、フィルターを通過した信号を半波整流して出力する。このような受容野内部構造により、明るい線分や暗い線分が受容野内部のどの位置に呈示されても、その方位や幅が適切であれば、複雑型細胞は興奮応答を示す。]]  
[[Image:V1ComplexRF.png|thumb|350px|'''図3 複雑型細胞の受容野とその内部モデル'''<br /> A. 複雑型細胞の受容野の模式図。上に2次元構造、下に1次元断面図を示す。複雑型細胞ではON領域とOFF領域が重なりあっている。B. 複雑型細胞の受容野の内部モデル。右のCが複雑型細胞を模した出力ユニット(エネルギーユニットという)を表す。このモデルでは、単純型細胞を模した4つのサブユニット(S1, S2, S3, S4) からの出力が収斂することでCの出力が形成される。各サブユニットは、共通の方位、空間周波数と、90度ずつ位相のずれたガボールフィルターをもち、フィルターを通過した信号を半波整流して出力する。このような受容野内部構造により、明るい線分や暗い線分が受容野内部のどの位置に呈示されても、その方位や幅が適切であれば、複雑型細胞は興奮応答を示す。]]  


 複雑型細胞も、単純型細胞と同様、サイン波の方位や空間周波数に選択性な応答を示す。しかし、単純型細胞の応答がサイン波の位相に強く依存するのにたいし、複雑型細胞では、方位や空間周波数が最適であれば、位相に関係なく強い反応がみられる。この特性は、最適な方位や空間周波数が同じで、最適な位相が異なる単純型細胞群の出力が複雑型細胞で収斂することで、作られうる<ref name="ref4" />。これを示すモデルのうち最も単純なものが図3に示すエネルギーモデル(energy model)である。このモデルでは、単純型細胞を模した4つのサブユニット(S1, S2, S3, S4) からの出力が収斂することで、複雑型細胞を模したエネルギーユニット(Cで表す)の応答が形成される。各サブユニットは、共通の方位、空間周波数および90度ずつ位相のずれたガボールフィルターをもち、フィルターを通した入力信号を半波整流して出力する。さらに、各サブユニットが同じ時間受容野をもつようにモデルを拡張することで、エネルギーユニットが運動方向選択性を示すようにできる。この拡張したエネルギーモデルは[[運動エネルギーモデル]](motion energy model)とよばれている<ref><pubmed> 3973762  </pubmed></ref>。複雑型細胞の大半は運動方向選択性を示すが<ref name="ref3" />、その特性は運動エネルギーモデルでうまく説明できる<ref><pubmed> 1574836 </pubmed></ref>。  
 複雑型細胞も、単純型細胞と同様、サイン波の方位や空間周波数に選択性な応答を示す。しかし、単純型細胞の応答がサイン波の位相に強く依存するのにたいし、複雑型細胞では、方位や空間周波数が最適であれば、位相に関係なく強い反応がみられる。この特性は、最適な方位や空間周波数が同じで、最適な位相が異なる単純型細胞群の出力が複雑型細胞で収斂することで作ることができる<ref name="ref4" />。これを示すモデルのうち最も単純なものが図3に示すエネルギーモデル(energy model)である。このモデルでは、単純型細胞を模した4つのサブユニット(S1, S2, S3, S4) からの出力が収斂することで、複雑型細胞を模したエネルギーユニット(Cで表す)の応答が形成される。各サブユニットは、共通の方位、空間周波数および90度ずつ位相のずれたガボールフィルターをもち、フィルターを通した入力信号を半波整流して出力する。さらに、各サブユニットが同じ時間受容野をもつようにモデルを拡張することで、エネルギーユニットが運動方向選択性を示すようにできる。この拡張したエネルギーモデルは[[運動エネルギーモデル]](motion energy model)と呼ばれる<ref><pubmed> 3973762  </pubmed></ref>。複雑型細胞の大半は運動方向選択性を示すが<ref name="ref3" />、その特性は運動エネルギーモデルでうまく説明できる<ref><pubmed> 1574836 </pubmed></ref>。  


 複雑型細胞の多くはまた、受容野内部であれば刺激の位置や明暗コントラスに関係なく両眼視差を検出できる。この性質は[[両眼視差エネルギーモデル]](disparity energy model)でうまく説明される<ref><pubmed> 2396096 </pubmed></ref>。  
 複雑型細胞の多くはまた、受容野内部であれば刺激の位置や明暗コントラスに関係なく両眼視差を検出できる。この性質は[[両眼視差エネルギーモデル]](disparity energy model)でうまく説明される<ref><pubmed> 2396096 </pubmed></ref>。  
77行目: 77行目:
=== 非古典的受容野  ===
=== 非古典的受容野  ===


 古典的受容野の周辺には、刺激が単独で呈示されるときには細胞活動に影響しないが、古典的受容野内部の刺激と同時に呈示されると、細胞に主に抑制性の影響を及ぼす空間範囲があり、これを非古典的受容野とよんでいる。<br>  
 古典的受容野の周辺には、刺激が単独で呈示されるときには細胞活動に影響しないが、古典的受容野内部の刺激と同時に呈示されると、細胞に影響を及ぼす空間範囲があり、これを非古典的受容野とよんでいる。<br>  


 非古典的受容野は網膜の段階ですでに存在しており、視覚経路のほとんど全ての段階でみられるが、ここでは最も多くの研究がなされたV1野の非古典的受容野について述べる。 V1野ではこの構造は周辺領域とよばれることも多いが、これは網膜でみられる古典的受容野の周辺部とは全く異なるので注意が必要である。この領域は古典的受容野の周囲に一様に広がるのではなく、ある程度の局在がみられ、古典的受容野の最適方位軸の延長上に広がるもの、最適方位と直交する軸方向に広がるもののほか、斜め方向に広がるものもある<ref><pubmed> 10575050 </pubmed></ref> <ref name="refme"><pubmed> 19109456 </pubmed></ref>。多くは抑制性の影響を及ばすが興奮性の影響も報告されている<ref><pubmed> 11024097 </pubmed></ref> 。非古典的受容野でみられる抑制には特徴選択性があり、古典的受容野でみられる最適な刺激方位、空間周波数にたいして、非古典的受容野では最も強い抑制がみられる<ref><pubmed> 8158236 </pubmed></ref><ref><pubmed> 12103439 </pubmed></ref> 。これらの特性は、ポップアップや図地分化と呼ばれる知覚現象の基盤として<ref><pubmed> 1588394 </pubmed></ref> 、あるいは線の長さや曲率<ref><pubmed> 3657960 </pubmed></ref>、主観的輪郭<ref><pubmed> 6539501 </pubmed></ref> 、テクスチャー境界<ref name="refme" />などさまざまな特徴を検出するための初期機構として注目されている。  
 非古典的受容野は網膜の段階ですでに存在しており、視覚経路のほとんど全ての段階でみられるが、ここでは最も多くの研究がなされたV1野の非古典的受容野について述べる。 V1野ではこの構造は周辺領域とよばれることも多いが、これは網膜でみられる古典的受容野の周辺部とは全く異なるので注意が必要である。この領域は古典的受容野の周囲に一様に広がるのではなく、ある程度の局在がみられ、古典的受容野の最適方位軸の延長上に広がるもの、最適方位と直交する軸方向に広がるもののほか、斜め方向に広がるものもある<ref><pubmed> 10575050 </pubmed></ref> <ref name="refme"><pubmed> 19109456 </pubmed></ref>。多くは抑制性の影響を及ばすが興奮性の影響も報告されている<ref><pubmed> 11024097 </pubmed></ref> 。非古典的受容野でみられる抑制には特徴選択性があり、古典的受容野内での最適な刺激方位、空間周波数が、非古典的受容野で最も強い抑制を引き起こす<ref><pubmed> 8158236 </pubmed></ref><ref><pubmed> 12103439 </pubmed></ref> 。これらの特性は、ポップアップや図地分化と呼ばれる知覚現象の基盤として<ref><pubmed> 1588394 </pubmed></ref> 、あるいは線の長さや曲率<ref><pubmed> 3657960 </pubmed></ref>、主観的輪郭<ref><pubmed> 6539501 </pubmed></ref> 、テクスチャー境界<ref name="refme" />などさまざまな特徴を検出するための初期機構として注目されている。  


=== 高次視覚野===
=== 高次視覚野===
87行目: 87行目:
  V1野以外にも霊長類には30以上もの視覚関連領野があり、これらはV1野、[[V2野]]を経て[[側頭葉]](temporal lobe)へと至る[[腹側経路]](ventral pathway)と[[頭頂葉]](parietal lobe)へと至る[[背側経路]](dorsal pathway)の2つの経路として構成されている。腹側経路は主に物体形状の分析に、背側経路は運動や空間位置情報の伝達に関与していると考えられている <ref><pubmed> 1822724 </pubmed></ref> 。  
  V1野以外にも霊長類には30以上もの視覚関連領野があり、これらはV1野、[[V2野]]を経て[[側頭葉]](temporal lobe)へと至る[[腹側経路]](ventral pathway)と[[頭頂葉]](parietal lobe)へと至る[[背側経路]](dorsal pathway)の2つの経路として構成されている。腹側経路は主に物体形状の分析に、背側経路は運動や空間位置情報の伝達に関与していると考えられている <ref><pubmed> 1822724 </pubmed></ref> 。  


 細胞の受容野サイズは高次の領野ほど大きくなる。霊長類 第一次視覚野では、中心視野でみられる受容野サイズは0.1~1度程度であるが、腹側経路の最終段階に位置するTE野では、10度以上にもなる。ただし受容野サイズは偏心度にも依存し、中心視野では小さく、周辺視野ほど大きくなる。例えば 第一次視覚野の周辺視野の受容野サイズは5度から10度程度である。また 第一次視覚野細胞の受容野位置は対側視野(細胞が存在する大脳半球の反対側の視野部位。右半球の場合は左視野)に限られるものが大部分であるが、受容野サイズが大きくなるにつれて、同側視野も含むものが増してくる。TE野では多くの細胞が同側視野を受容野に含む<ref><pubmed> 6470767 </pubmed></ref>。  
 細胞の受容野サイズは高次の領野ほど大きくなる。霊長類のV1野では、中心視野でみられる受容野サイズは0.1~1度程度であるが、腹側経路の最終段階に位置するTE野では、10度以上にもなる。ただし受容野サイズは偏心度にも依存し、中心視野では小さく、周辺視野ほど大きくなる。例えば V1野の周辺視野の受容野サイズは5度から10度程度である。また  V1野細胞の受容野位置は対側視野(細胞が存在する大脳半球の反対側の視野部位。右半球の場合は左視野)に限られるものが大部分であるが、視覚経路後半になって受容野サイズが大きくなるにつれて、同側視野も含むものが増してくる。TE野では多くの細胞が同側視野を受容野に含む<ref><pubmed> 6470767 </pubmed></ref>。  


==== 背側経路====
==== 背側経路====
97行目: 97行目:
==== 腹側経路====
==== 腹側経路====


 腹側経路では、高次の段階に向かうにつれて、複雑な物体特徴を適刺激とするような受容野が増してくる。V2野に折れ線に反応する細胞<ref><pubmed> 15056711 </pubmed></ref> 、[[V4野]]にテクスチャー、パターン、曲率や凹凸の情報を伝える細胞<ref><pubmed> 8418487 </pubmed></ref>、[[TEO野]]には物体の部分的特徴、[[TE野]]に至っては顔などの極めて複雑な特徴の情報を伝える細胞が存在する<ref><pubmed> 6470767 </pubmed></ref><ref><pubmed> 1448150 </pubmed></ref>。これらの細胞の多くは、受容野内部で刺激の位置、向き、あるいは形を定義する手がかり(明るさの違いや色の違いなど)を変えても特徴選択性を維持する。 腹側経路でも、大部分の細胞は両眼に受容野をもち、両眼視差に感受性をもつことから、この経路も奥行き知覚に関与していると考えられている<ref><pubmed> 10899190 </pubmed></ref>。  
 腹側経路では、高次の段階に向かうにつれて、複雑な物体特徴を適刺激とするような受容野が増してくる。V2野に折れ線に反応する細胞<ref><pubmed> 15056711 </pubmed></ref> 、[[V4野]]にテクスチャー、パターン、曲率や凹凸の情報を伝える細胞<ref><pubmed> 8418487 </pubmed></ref>、[[TEO野]]には物体の部分的特徴、[[TE野]]に至っては顔などの極めて複雑な特徴の情報を伝える細胞が存在する<ref><pubmed> 6470767 </pubmed></ref><ref><pubmed> 1448150 </pubmed></ref>。これらの細胞の多くは、受容野内部で刺激の位置、向き、あるいは形を定義する手がかり(明るさの違いや色の違いなど)を変えても特徴選択性を維持する。 腹側経路でも、大部分の細胞は両眼に受容野をもち、両眼視差に感受性を持つことから、この経路も奥行き知覚に関与していると考えられている<ref><pubmed> 10899190 </pubmed></ref>。  


== 体性感覚系==
== 体性感覚系==

案内メニュー