「IPS細胞」の版間の差分

ナビゲーションに移動 検索に移動
513 バイト追加 、 2012年3月13日 (火)
編集の要約なし
編集の要約なし
編集の要約なし
37行目: 37行目:
== 細胞種  ==
== 細胞種  ==


 マウス胎仔の繊維芽細胞(mouse embryonic fibroblast, MEF)が用いられた。 成体の繊維芽細胞、胃上皮細胞、肝実質細胞、神経幹細胞、T細胞、脂肪幹細胞、間葉系幹細胞。一方、ヒトiPS細胞に関しては、皮膚繊維芽細胞のほか羊膜細胞、臍帯血、末梢血、骨髄、ケラチノサイト、脂肪間質細胞、歯髄幹細胞からの樹立が報告されている。
 マウス胎仔の繊維芽細胞(mouse embryonic fibroblast, MEF)が用いられた。 成体の繊維芽細胞、胃上皮細胞、肝実質細胞、神経幹細胞、T細胞、脂肪幹細胞、間葉系幹細胞。一方、ヒトiPS細胞に関しては、皮膚繊維芽細胞のほか毛乳頭、色素細胞、羊膜細胞、臍帯血、末梢血、骨髄、ケラチノサイト、脂肪間質細胞、歯髄幹細胞からの樹立が報告されている。


<br>
<br>
43行目: 43行目:
== 遺伝子導入方法  ==
== 遺伝子導入方法  ==


 iPS細胞が樹立された当初は、遺伝子導入の手段としてレトロウイルスやレンチウイルスがベクターとして利用された。しかし、どちらのウイルスもゲノムDNAに組み込まれることから、挿入変異や近傍の遺伝子に及ぼす影響、さらには導入遺伝子の活性化による腫瘍形成等、予期しない異常が生じる危険性を包含している。そこで、遺伝子挿入に伴うリスクを避けるための新たな遺伝子導入方法が考案されてきた。その一つに、iPS細胞樹立後の導入遺伝子の除去を可能とする方法として、トランスポゾンを利用したピギーバック(piggyBac)やCre-loxPシステムが開発された。一方、はじめからゲノムに組み込まれないエピソーマルベクターとして、センダイウイルスやプラスミドDNAを用いる手法も挙げられる。さらに、ベクターを介することなく組換えタンパク質や合成RNA、miRNAを直接導入する方法についても報告されている。
 iPS細胞が樹立された当初は、遺伝子導入の手段としてレトロウイルスやレンチウイルスがベクターとして利用された。しかし、どちらのウイルスもゲノムDNAに組み込まれることから、挿入変異や近傍の遺伝子に及ぼす影響、さらには導入遺伝子の活性化による腫瘍形成等、予期しない異常が生じる危険性を包含している。そこで、遺伝子挿入に伴うリスクを避けるための新たな遺伝子導入方法が考案されてきた。その一つに、iPS細胞樹立後の導入遺伝子の除去を可能とする方法として、トランスポゾンを利用したピギーバック(piggyBac)やCre-loxPシステムが開発された。一方、はじめからゲノムに組み込まれないエピソーマルベクターとして、アデノウイルスやセンダイウイルス、プラスミドDNAを用いる手法も挙げられる。さらに、ベクターを介することなく組換えタンパク質や合成RNA、miRNAを直接導入する方法についても報告されている。


<br>
<br>
49行目: 49行目:
== iPS細胞を誘導する遺伝子  ==
== iPS細胞を誘導する遺伝子  ==


 前述の通り、最初のiPS細胞はOct4、Sox2、Klf4、c-Mycの4種類の遺伝子(山中4因子)を導入することによって作成された。間もなく、誘導効率は低下するもののc-Mycを除いたOct4、Sox2、Klf4のみ(山中3因子)によってもiPS細胞は樹立可能であることが示された。ヒトの場合もマウスと同じ遺伝子セットでiPS細胞の誘導が可能であるが、山中博士らとほぼ同時にヒトiPS細胞について報告したJames Thomson博士らはOCT4、SOX2、NANOG、LIN28の組合せを用いている。最も広範に利用されている遺伝子セットは山中因子であるが、神経幹細胞の場合はOct4単独の導入によってiPS細胞が誘導し得るように、細胞種によっては少ない因子でのiPS細胞誘導も可能である。また、iPS細胞の誘導効率や初期化レベルを向上させる要因として、Esrrb、Tbx3、L-Myc、Glis1等の因子の追加や、p53、p21、Baxの抑制等の効果について報告されている。<br> 一方、遺伝子導入ではなく低分子化合物を併用したiPS細胞誘導についても多数の報告がある。俗に2iや3iBayK8644。エピジェネティック変化を促すものとして、ヒストン脱アセチル化酵素阻害剤のバルプロ酸(VPA)やG9a阻害剤のBIX01294、シチジン類縁体の5-アザシチジン。  
 前述の通り、最初のiPS細胞はOct4、Sox2、Klf4、c-Mycの4種類の遺伝子(山中4因子)を導入することによって作成された。間もなく、誘導効率は低下するもののc-Mycを除いたOct4、Sox2、Klf4のみ(山中3因子)によってもiPS細胞は樹立可能であることが示された。ヒトの場合もマウスと同じ遺伝子セットでiPS細胞の誘導が可能であるが、山中博士らとほぼ同時にヒトiPS細胞について報告したJames Thomson博士らはOCT4、SOX2、NANOG、LIN28の組合せを用いている。最も広範に利用されている遺伝子セットは山中因子であるが、神経幹細胞の場合はOct4単独の導入によってiPS細胞が誘導し得るように、細胞種によっては少ない因子でのiPS細胞誘導も可能である。また、iPS細胞の誘導効率や初期化レベルを向上させる要因として、Esrrb、Tbx3、L-Myc、Glis1等の因子の追加や、p53、p21、Baxの抑制等の効果について報告されている。<br> 一方、遺伝子導入ではなく低分子化合物を併用したiPS細胞誘導についても多数の報告がある。俗に2iや3iと呼ばれる。BayK8644。エピジェネティック変化を促すものとして、ヒストン脱アセチル化酵素阻害剤のバルプロ酸(VPA)やG9a阻害剤のBIX01294、シチジン類縁体の5-アザシチジン。  


<br>
<br>
60行目: 60行目:


= 医療応用の可能性  =
= 医療応用の可能性  =
== iPS細胞の安全性 ==


 iPS細胞のヒトへの応用に先立ち、安全性の評価法と急務である。がん遺伝子であるc-Mycを導入した初期のiPS細胞は高頻度にがんを誘発した。また、成体の肝実質細胞由来のiPS細胞では。慶應義塾大学の三浦恭子博士らは、様々なマウスiPS細胞から分化誘導した神経幹細胞(Neurosphere)を免疫不全マウス成体脳へと移植し、腫瘍形成の有無について検証を行った。その結果、iPS細胞由来の神経幹細胞移植に伴う腫瘍形成を規定する要因は、iPS細胞樹立過程におけるc-Mycの導入や
 iPS細胞のヒトへの応用に先立ち、安全性の評価法と急務である。がん遺伝子であるc-Mycを導入した初期のiPS細胞は高頻度にがんを誘発した。また、成体の肝実質細胞由来のiPS細胞では。慶應義塾大学の三浦恭子博士らは、様々なマウスiPS細胞から分化誘導した神経幹細胞(Neurosphere)を免疫不全マウス成体脳へと移植し、腫瘍形成の有無について検証を行った。その結果、iPS細胞由来の神経幹細胞移植に伴う腫瘍形成を規定する要因は、iPS細胞樹立過程におけるc-Mycの導入や


 一方、慶應義塾大学の岡野栄之博士のグループでは、マウスおよびヒトiPS細胞から分化誘導したNeurosphereを脊髄損傷モデルマウスに移植することで下肢運動機能の改善が認められることを報告している。細胞移植治療が見込まれる。また、最近では、iPS細胞を介さずに任意の細胞種を直接誘導する「ダイレクトリプログラミング」の研究も盛んに進められており、iPS細胞以外の選択肢としてより安全性の高い手法の開発が期待されている。
 
 
== 細胞移植治療への挑戦 ==
 
 一方、細胞移植治療に向けた基礎研究も活発に進められている。Rudolf Jaenisch博士らは、貧血モデルマウスから作成したiPS細胞に対して疾患原因遺伝子の修復を施し、そこから分化誘導した造血幹細胞による移植治療を行うという、iPS細胞を用いた自家移植治療のモデルケースを示した。慶應義塾大学の岡野栄之博士のグループでは、マウスおよびヒトiPS細胞から分化誘導したNeurosphereを脊髄損傷モデルマウスに移植することで下肢運動機能の改善が認められることを報告している。細胞移植治療が見込まれる。また、最近では、iPS細胞を介さずに任意の細胞種を直接誘導する「ダイレクトリプログラミング」の研究も盛んに進められており、iPS細胞以外の選択肢としてより安全性の高い手法の開発が期待されている。


<br>
<br>
67

回編集

案内メニュー