「胚性幹細胞」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
9行目: 9行目:
=== 樹立と培養  ===
=== 樹立と培養  ===


[[Image:B6J x4.jpg|thumb|図1 マウス ES 細胞 (提供:広島大学・神田暁史博士)]] 1981 年、Evans と Kaufman によってマウス ES 細胞(原著では EK 細胞と表記)の樹立が初めて報告された<ref><pubmed> 7242681 </pubmed></ref>。現在までに、より簡便で効率的なマウス ES 細胞の樹立方法が確立されている。典型的には、胚盤胞期まで発生した胚を、フィーダー細胞と呼ばれる増殖阻止したマウス胎児線維芽細胞層上に播種し、分化抑制因子となる白血病抑制因子(LIF)を添加した培地中で ICM を outgrowth させる。十分に増殖した ICM 由来の細胞塊をガラス毛細管で分離し、トリプシン処理により分散させ新たなフィーダー細胞上に播種する。更に培養することで得られる ES 細胞様の形態を示すコロニーを再び分離し、継代培養により増幅することで樹立される。マウスにおいてはその遺伝的背景により樹立効率が異なり、現在使用される ES 細胞株はそのほとんどが 129 系統に由来するものである。近年では、他の近交系からも樹立が報告されているが、一般的に129 系統から得られる ES 細胞よりも安定性は低いとされる。また、樹立効率には性差があり、マウス ES 細胞の多くはオスの胚に由来する。  
[[Image:B6J x4.jpg|thumb|図1 マウス ES 細胞 (提供:広島大学・神田暁史博士)]] 1981 年、Evans と Kaufman によってマウス ES 細胞(原著では EK 細胞と表記)の樹立が初めて報告された<ref><pubmed> 7242681 </pubmed></ref>。現在までに、より簡便で効率的なマウス ES 細胞の樹立方法が確立されている。典型的には、胚盤胞期まで発生した胚を、フィーダー細胞と呼ばれる増殖阻止したマウス胎児線維芽細胞層上に播種し、分化抑制因子となる白血病抑制因子(LIF)を添加した培地中で ICM を outgrowth させる。十分に増殖した ICM 由来の細胞塊をガラス毛細管で分離し、トリプシン処理により分散させ新たなフィーダー細胞上に播種する。更に培養することで得られる ES 細胞様の形態を示すコロニーを再び分離し、継代培養により増幅することで樹立される。マウスにおいてはその遺伝的背景により樹立効率が異なり、現在使用される ES 細胞株はその多くが 129 系統に由来するものである。近年では、他の近交系からも樹立が報告されているが、一般的に129 系統から得られる ES 細胞よりも安定性は低いとされる。また、樹立効率には性差があり、マウス ES 細胞の多くはオスの胚に由来する。  


 マウス ES 細胞はフィーダー細胞上で培養され、一般的には15~20&nbsp;% 程度の牛胎児血清あるいは血清代替物と、LIF を添加した培地で行われる(図1)。近年、ES 細胞の未分化状態維持機構及び分化開始機構の一端が明らかにされるようになり、これに基づいて ERK 及び GSK3β を遮断する2つの阻害剤(2i)を培地に加えることで、更に均一で安定な培養を行うことが可能になっている<ref><pubmed> 18497825 </pubmed></ref>。  
 マウス ES 細胞はフィーダー細胞上で培養され、一般的には15~20&nbsp;% 程度の牛胎児血清あるいは血清代替物と、LIF を添加した培地で行われる(図1)。近年、ES 細胞の未分化状態維持機構及び分化開始機構の一端が明らかにされるようになり、これに基づき ERK 及び GSK3β を遮断する2つの阻害剤(2i)を培地に加えることで、更に均一で安定な培養を行うことが可能になっている<ref><pubmed> 18497825 </pubmed></ref>。  


=== 主な特徴  ===
=== 主な特徴  ===
19行目: 19行目:
=== 研究ツールとしてのマウス ES 細胞  ===
=== 研究ツールとしてのマウス ES 細胞  ===


 マウス ES 細胞は、初期胚と凝集させ、あるいは注入して子宮に移植することで、その後の個体発生に寄与してキメラマウスを作成することができる。この際、生殖細胞にマウス ES 細胞由来の細胞を持つキメラマウスを得られることがある(Germ line transmission)。このようなキメラマウスを交配し、子孫を得ることで、マウス ES 細胞の遺伝形質を有するマウス個体が得られる。<br> このことを利用し、予めマウス ES 細胞に遺伝子改変を施しておくことで、遺伝子改変マウス個体を作出することができる。特に、相同組換え技術を用いてゲノムの特定部位を改変し(標的遺伝子組換え法、ジーンターゲティング)、任意の遺伝子を欠失させたノックアウト・マウス作成は、マウス個体における遺伝子機能を解析する際の標準的な手技になった。また、疾患モデルマウスの作出など生命科学分野で多岐にわたり利用され、2007 年にはこの技術に関する功績により Mario R. Capecchi, Sir Martin J. Evans, Oliver Smithiesの 3 氏にノーベル医学・生理学賞が授与された。<br> 現在では、単純なノックアウト・マウス作成に加え、Cre や Flp などの部位特異的組換え酵素を応用して、特定の場所及び時期において遺伝子を欠失させる条件付きノックアウト・マウス作成の技術など、遺伝子工学の発達と共に、今なお進展している。<br>  
 マウス ES 細胞は、初期胚と凝集させ、あるいは注入して子宮に移植することで、その後の個体発生に寄与してキメラマウスを作成することができる。この際、生殖細胞にマウス ES 細胞由来の細胞を持つキメラマウスを得られることがある(Germ line transmission)。このようなキメラマウスを交配し、子孫を得ることで、マウス ES 細胞の遺伝形質を有するマウス個体が得られる。<br> このことを利用し、予めマウス ES 細胞に遺伝子改変を施しておくことで、遺伝子改変マウス個体を作出することができる。特に、相同組換え技術を用いてゲノムの特定部位を改変し(標的遺伝子組換え法、ジーンターゲティング)、任意の遺伝子を欠失させたノックアウト・マウス作成は、マウス個体における遺伝子機能を解析する際の標準的な手技になった。また、疾患モデルマウスの作出など生命科学分野で多岐にわたり利用され、2007 年にはこの技術に関する功績により Mario R. Capecchi, Sir Martin J. Evans, Oliver Smithies の 3 氏にノーベル医学・生理学賞が授与された。<br> 現在では、単純なノックアウト・マウス作成に加え、Cre や Flp などの部位特異的組換え酵素を応用して、特定の場所及び時期において遺伝子を欠失させる条件付きノックアウト・マウス作成の技術など、遺伝子工学の発達と共に、今なお進展している。<br>  


 このような現代の発生工学技術における中心的な貢献と共に、マウス ES 細胞の持つ多分化能は、各種体細胞及び生殖細胞の分化・発生メカニズムを研究するためのツールとしても広く利用されてきた。マウス ES 細胞は LIF を除いた培地中で浮遊培養することで分化し、胚様体と呼ばれる三胚葉系の様々な分化細胞からなる構造体を形成する。この分化は自発的でランダムであるが、培養系を調整することで、目的の細胞系譜へと分化させることも可能である。このような培養系を用いることで、生体内では研究が難しい、初期の胚発生過程における細胞分化を in vitro において再現することができる。この系を用い、細胞の分化過程に関わる遺伝子、必要な成長因子や下流のシグナル伝達などについての詳細な解析が可能になった。  
 このような現代の発生工学技術における中心的な貢献と共に、マウス ES 細胞の持つ多分化能は、各種体細胞及び生殖細胞の分化・発生メカニズムを研究するためのツールとしても広く利用されてきた。マウス ES 細胞は LIF を除いた培地中で浮遊培養することで分化し、胚様体と呼ばれる三胚葉系の様々な分化細胞からなる構造体を形成する。この分化は自発的でランダムであるが、培養系を調整することで、目的の細胞系譜へと分化させることも可能である。このような培養系を用いることで、生体内では研究が難しい、初期の胚発生過程における細胞分化を in vitro において再現することができる。この系を用い、細胞の分化過程に関わる遺伝子、必要な成長因子や下流のシグナル伝達などについての詳細な解析が可能になった。  
20

回編集