「内側膝状体」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
22行目: 22行目:


===MGm===
===MGm===
MGmの大きな特徴は、幅広い領域から投射を受けていることである。MGmは同側下丘の全ての亜核から投射を受け、上オリーブ核群、腹外側毛体からも投射を受け聴覚情報の入力を受けている(Malmierca et al. 2002)。さらに脊髄、前庭核、上丘深層から聴覚以外の情報を受け取っている(Jones and Burton, 1974; Graham, 1977)。また下降系経路として視床網様核(TRN)や聴覚野から入力がある。MGmは聴覚野の全ての領域と体性感覚野にも軸索を伸ばしている。線条体や扁桃体にも投射している(LeDoux et al. 1985)。MGmニューロンの周波数チューニングはMGvより2倍ほど広い。MGmニューロンの多くは長い潜時を持つ。MGmニューロンはMGvニューロンよりもNa+-K+-ATPaseの活動性が強いことが知られている(Senatorov and Hu, 1997)。MGmはネコではトノトピー構造があることが示唆されている(Imig, 1985)。MGmは主にmagnocellular cellから構成される。
MGmの大きな特徴は、幅広い領域から投射を受けていることである。MGmは同側下丘の全ての亜核から投射を受け、上オリーブ核群、腹外側毛体からも投射を受け聴覚情報の入力を受けている<ref><pubmed> 12486183 </pubmed></ref>。さらに脊髄、前庭核、上丘深層から聴覚以外の情報を受け取っている<ref><pubmed> 4132971 </pubmed></ref><ref><pubmed> 864027 </pubmed></ref>。また下降系経路として視床網様核(TRN)や聴覚野から入力がある。MGmは聴覚野の全ての領域と体性感覚野にも軸索を伸ばしている。線条体や扁桃体にも投射している<ref><pubmed> 4086664 </pubmed></ref>。MGmニューロンの周波数チューニングはMGvより2倍ほど広い。MGmニューロンの多くは長い潜時を持つ。MGmニューロンはMGvニューロンよりもNa+-K+-ATPaseの活動性が強いことが知られている<ref><pubmed> 9263918 </pubmed></ref>。MGmはネコではトノトピー構造があることが示唆されている(Imig, 1985)。MGmは主にmagnocellular cellから構成される。


==MGの抑制ニューロン==
==MGの抑制ニューロン==
MGの抑制ニューロンの割合は種に依って大きく異なる。コウモリやラットではGABAニューロンは全体の1%程しか存在しない。よってこれらの動物では視床網様核(TRN)を介する抑制が重要となる。また下丘からMGに抑制性の投射が送られる(Winner et al. 1996)。GABAニューロンの割合が著しく少ないラットでは、下丘による抑制の割合が他の種より多いことが判っており、実に下丘ニューロンの40%もがMGに抑制性軸索を送っている。ネコやサルではMGニューロンに占めるGABAニューロンの割合は30%に増える。GABAニューロンの割合がこれほど異なるのは、種によって大切な音の種類と複雑さが異なるためだと考えられている(Winer and Laure, 1996)
MGの抑制ニューロンの割合は種に依って大きく異なる。コウモリやラットではGABAニューロンは全体の1%程しか存在しない。よってこれらの動物では視床網様核(TRN)を介する抑制が重要となる。また下丘からMGに抑制性の投射が送られる<ref><pubmed> 8755593 </pubmed></ref>。GABAニューロンの割合が著しく少ないラットでは、下丘による抑制の割合が他の種より多いことが判っており、実に下丘ニューロンの40%もがMGに抑制性軸索を送っている。ネコやサルではMGニューロンに占めるGABAニューロンの割合は30%に増える。GABAニューロンの割合がこれほど異なるのは、種によって大切な音の種類と複雑さが異なるためだと考えられている<ref><pubmed> 8610172 </pubmed></ref>


==MGの機能==
==MGの機能==
現在知られている知見を持ってMGの担う聴覚情報処理機能を断定することは非常に難しい。しかし視床の一般的な特徴を俯瞰する時、MGの機能を推測することが可能である。
現在知られている知見を持ってMGの担う聴覚情報処理機能を断定することは非常に難しい。しかし視床の一般的な特徴を俯瞰する時、MGの機能を推測することが可能である。


MGや聴覚野に至らずとも下丘までで基本的な聴覚情報処理はされていると考えられている(Paxinos, 2004)。一方、聴覚野は時間的な情報やハーモニーなど音の組合せ情報の処理・認知など高度な役割が与えられている(Wetzel et al, 2008; Bendor and Wang, 2005, Tsukano et al. 2008)。MGはその間に位置し下丘と聴覚野を結び、聴覚野に送るべき情報を選別するゲートであると考えられる(Guillery et al. 1998)(図4)。その指令塔の機能を有すると思われる視床網様核(TRN)が腹側視床に存在している。TRNは視床を囲う様に位置する神経核で、その殆どがGABAニューロンで占められている神経核である。視床から皮質、皮質から視床に至る軸索はほぼ全てTRNに側枝を伸ばしている。TRNは聴覚野からのフィードバックを元にMGに抑制を与え、側方抑制などに貢献している(Paxinos, 2004)。さらにTRNは前頭葉からの情報を元にMGに抑制を与え、注意を向けた対象以外のことに抑制をかけるフィルター機能も有すると考えられている(Zikopoulos and Barbas., 2006)。またTRNからMGへの抑制回路は視覚など他のモダリティによる聴覚抑制にも関与している(Kimura et al. 2012)。詳しくは「視床ゲート機構」の項に譲る。
MGや聴覚野に至らずとも下丘までで基本的な聴覚情報処理はされていると考えられている(Paxinos, 2004)。一方、聴覚野は時間的な情報やハーモニーなど音の組合せ情報の処理・認知など高度な役割が与えられている<ref><pubmed> 18436653 </pubmed></ref><ref><pubmed> 16121182 </pubmed></ref>(Tsukano et al. 2008)。MGはその間に位置し下丘と聴覚野を結び、聴覚野に送るべき情報を選別するゲートであると考えられる<ref><pubmed> 9464683 </pubmed></ref>(図4)。その指令塔の機能を有すると思われる視床網様核(TRN)が腹側視床に存在している。TRNは視床を囲う様に位置する神経核で、その殆どがGABAニューロンで占められている神経核である。視床から皮質、皮質から視床に至る軸索はほぼ全てTRNに側枝を伸ばしている。TRNは聴覚野からのフィードバックを元にMGに抑制を与え、側方抑制などに貢献している(Paxinos, 2004)。さらにTRNは前頭葉からの情報を元にMGに抑制を与え、注意を向けた対象以外のことに抑制をかけるフィルター機能も有すると考えられている<ref><pubmed> 16837581 </pubmed></ref>。またTRNからMGへの抑制回路は視覚など他のモダリティによる聴覚抑制にも関与している<ref><pubmed> 22101990 </pubmed></ref>。詳しくは「視床ゲート機構」の項に譲る。


<references />
<references />


(執筆者:塚野浩明、澁木克栄、担当編集委員:)
(執筆者:塚野浩明、澁木克栄、担当編集委員:渡辺大)
84

回編集