「ロドプシン」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
54行目: 54行目:


== シッフ塩基プロトン・対イオン ==
== シッフ塩基プロトン・対イオン ==
 ロドプシン中でのレチナールはリジン残基とシッフ塩基結合をしている。分子内でレチナールが共有結合しているのは、いつでも光受容出来るように発色団をタンパク質内に留めておく働きがある。さらにシッフ塩基を介したこの共有結合はロドプシンの機能発現にも重要な役割を果たしている。
 ロドプシン中でのレチナールはリジン残基とシッフ塩基結合をしている。分子内でレチナールが共有結合しているのは、いつでも光受容出来るように発色団をタンパク質内に留めておく働きがある。さらにシッフ塩基を介したこの共有結合は可視光受容をするためにも重要な役割を果たしている(後述の吸収スペクトルを参照)。
 
 ロドプシンが[[wikipedia:JA:可視光|可視光]](最大吸収波長500nm)を受容できるのは、このシッフ塩基の[[wikipedia:JA:窒素|窒素]]原子が[[wikipedia:JA:プロトン|プロトン]]化しているからである。レチナールやレチナールシッフ塩基は吸収極大波長が[[wikipedia:JA:紫外部|紫外部]]にあり、紫外光しか吸収することができない。一方、レチナールシッフ塩基がプロトン化すると、分子内の[[wikipedia:JA:二重結合|二重結合]]系が非局在化され、その結果、吸収極大波長が可視部に移動する。


 レチナールはオプシンの内部に埋め込まれており、また、そのプロトン化シッフ塩基は疎水的な環境に位置している。そのためそのままでは非常に不安定である。オプシン内にはこの[[wikipedia:JA:正電荷|正電荷]]を安定化する対イオン(counterion)が存在する。ロドプシンではグルタミン酸113が対イオンとして働き<ref><pubmed> 2573063 </pubmed></ref>、ヘリックス7のシッフ塩基プロトンの正電荷とヘリックス3の[[グルタミン酸]]の負電荷の間に塩橋(salt bridge)が形成される<ref><pubmed> 1356370 </pubmed></ref>。また対イオンはシッフ塩基の[[wikipedia:JA:pKa|pKa]]を上げシッフ塩基の[[wikipedia:JA:加水分解|加水分解]]を防いでいる。対イオンは単独で働いているのではなく、構造水を含む[[wikipedia:JA:水素結合|水素結合]]ネットワークを形成して働いていると考えられている。  
 レチナールはオプシンの内部に埋め込まれており、また、そのプロトン化シッフ塩基は疎水的な環境に位置している。そのためそのままでは非常に不安定である。オプシン内にはこの[[wikipedia:JA:正電荷|正電荷]]を安定化する対イオン(counterion)が存在する。ロドプシンではグルタミン酸113が対イオンとして働き<ref><pubmed> 2573063 </pubmed></ref>、ヘリックス7のシッフ塩基プロトンの正電荷とヘリックス3の[[グルタミン酸]]の負電荷の間に塩橋(salt bridge)が形成される<ref><pubmed> 1356370 </pubmed></ref>。また対イオンはシッフ塩基の[[wikipedia:JA:pKa|pKa]]を上げシッフ塩基の[[wikipedia:JA:加水分解|加水分解]]を防いでいる。対イオンは単独で働いているのではなく、構造水を含む[[wikipedia:JA:水素結合|水素結合]]ネットワークを形成して働いていると考えられている。  
68行目: 66行目:


== 吸収スペクトル ==
== 吸収スペクトル ==
 レチナールは有機溶媒中では380 nm付近に吸収極大を示すが、オプシン中のリシン残基とプロトン化したシッフ塩基を形成すると、500 nm付近に吸収極大がシフトする。有機溶媒中のプロトン化シッフ塩基は約440 nmに吸収極大を示す。そこで、440 nmからタンパク質の作用によって変化する差分を「オプシンシフト(Opsin shift)」と呼ぶ(図4a)。 このように、ロドプシンの吸収極大はプロトン化したレチナールシッフ塩基の吸収極大がまわりのアミノ酸残基によって調節されたものである<ref>'''K Nakanishi, V Baloghair, M Arnaboli, K Tsujimoto, and B Honig'''<br>An External Point-Charge Model for Bacteriorhodopsin to Account for Its Purple Color<br>''J Am Chem Soc'':1980</ref>。多くの動物のロドプシンは500nm付近に吸収極大を示すが、深海など極端な光環境下で生息する生物はそれぞれの光環境に適した吸収極大を示す。 (この段落と「 シッフ塩基プロトン・対イオン」の段落は一部重複致しますので、整理を御願い出来ればと存じます。)
レチナールやレチナールシッフ塩基は吸収極大波長が[[wikipedia:JA:紫外部|紫外部]]にあり、紫外光しか吸収することができない。しかしロドプシン中ではシッフ塩基がプロトン化しレチナール分子内の[[wikipedia:JA:二重結合|二重結合]]系が非局在化され、その結果、吸収極大波長が可視部に移動する。有機溶媒中のプロトン化シッフ塩基は約440 nmに吸収極大をもつが、ロドプシン中ではレチナール近傍のアミノ酸の効果によってさらに波長をシフトすることができる。この440 nmからタンパク質の作用によって変化する差分を「オプシンシフト(Opsin shift)」と呼ぶ(図4a)。 このように、ロドプシンの吸収極大はプロトン化したレチナールシッフ塩基の吸収極大がまわりのアミノ酸残基によって調節されたものである<ref>'''K Nakanishi, V Baloghair, M Arnaboli, K Tsujimoto, and B Honig'''<br>An External Point-Charge Model for Bacteriorhodopsin to Account for Its Purple Color<br>''J Am Chem Soc'':1980</ref>。多くの動物のロドプシンは500nm付近に吸収極大を示すが、深海など極端な光環境下で生息する生物はそれぞれの光環境に適した吸収極大を示す。  


 オプシンシフト以外にもロドプシンはレチナールの種類を変えることによって吸収スペクトルを変えることができる。多くの脊椎動物は通常ビタミンA1(retinal)を用いるが、[[wikipedia:JA:魚類|魚類]]、[[wikipedia:JA:両生類|両生類]]や[[wikipedia:JA:爬虫類|爬虫類]]のなかには[[wikipedia:JA:A2 retinal|A2 retinal]] (3,4-dehydroretinal) を用いるものもいる。 共役二重結合系が長いのでA2レチナールはA1に比べてより長波長に吸収を持つ(図4b)。従ってA1/A2の視物質は同じタンパク質でもそれぞれ違う色をもつ。Opsin+A1 retinalの視物質がRhodopsin(rhod=紅)と呼ばれるのに対してOpsin+A2 retinalはPorphyropsin(porphyr=紫)と呼ばれる。カエル幼生([[wikipedia:JA:オタマジャクシ|オタマジャクシ]])のオプシンがA2レチナールを発色団とし、成体(カエル)になるとA1レチナールを発色団とする事が知られている。つまり、オタマジャクシは、濁った淡水でより透過に優れた長波長の光を利用するためにA2レチナールを利用していると考えられる。また、魚類(特に淡水魚)などは2種類のレチナールを持ち、季節変動などの環境要因によってA1/A2レチナールを使い分けていると考えられている。 無脊椎動物の視物質ではA1, A2 retinalの他にA3([[wikipedia:JA:3-hydroxyretina|3-hydroxyretina]])やA4([[wikipedia:JA:4-hydroxyretinal|4-hydroxyretinal]]) retinalが用いられる(図4c)。
 オプシンシフト以外にもロドプシンはレチナールの種類を変えることによって吸収スペクトルを変えることができる。多くの脊椎動物は通常ビタミンA1(retinal)を用いるが、[[wikipedia:JA:魚類|魚類]]、[[wikipedia:JA:両生類|両生類]]や[[wikipedia:JA:爬虫類|爬虫類]]のなかには[[wikipedia:JA:A2 retinal|A2 retinal]] (3,4-dehydroretinal) を用いるものもいる。 共役二重結合系が長いのでA2レチナールはA1に比べてより長波長に吸収を持つ(図4b)。従ってA1/A2の視物質は同じタンパク質でもそれぞれ違う色をもつ。Opsin+A1 retinalの視物質がRhodopsin(rhod=紅)と呼ばれるのに対してOpsin+A2 retinalはPorphyropsin(porphyr=紫)と呼ばれる。カエル幼生([[wikipedia:JA:オタマジャクシ|オタマジャクシ]])のオプシンがA2レチナールを発色団とし、成体(カエル)になるとA1レチナールを発色団とする事が知られている。つまり、オタマジャクシは、濁った淡水でより透過に優れた長波長の光を利用するためにA2レチナールを利用していると考えられる。また、魚類(特に淡水魚)などは2種類のレチナールを持ち、季節変動などの環境要因によってA1/A2レチナールを使い分けていると考えられている。 無脊椎動物の視物質ではA1, A2 retinalの他にA3([[wikipedia:JA:3-hydroxyretina|3-hydroxyretina]])やA4([[wikipedia:JA:4-hydroxyretinal|4-hydroxyretinal]]) retinalが用いられる(図4c)。
42

回編集