「マイネルト基底核」の版間の差分
細編集の要約なし |
細 (ページの作成:「[[image: 英:Nucleus basalis of Meynert 羅:nucleus basalis telencephali 英略称:NBM 同義語:マイネルト基底核 マイネルト核は前脳基...」) |
||
(3人の利用者による、間の19版が非表示) | |||
1行目: | 1行目: | ||
[[image: | |||
英:Nucleus basalis of Meynert 羅:nucleus basalis telencephali | |||
英略称:NBM | 英略称:NBM | ||
同義語:マイネルト基底核 | |||
マイネルト核は前脳基底部に存在する神経核であり、そのコリン性神経細胞は淡蒼球と内包との境界に散在する<ref><pubmed> 8006218 </pubmed></ref>。求心性の軸索を大脳皮質の広範囲へ投射する<ref name = PG1987><pubmed> 3300852 </pubmed></ref>。マイネルト核はコリン作動性の神経核として知られてきたが、アセチルコリン(acetylcholine, ACh)を含む神経細胞だけでなく、GABAあるいはグルタミン酸を含む神経細胞も存在する<ref><pubmed> 18279318 </pubmed></ref>。関与する機能としては、皮質可塑性<ref><pubmed> 11000421 </pubmed></ref>、睡眠と覚醒<ref><pubmed> 14650916 </pubmed><ref>、脳血流制御<ref><pubmed>15135901</pubmed><ref>などがある<ref><pubmed> 9075237 </pubmed></ref><ref><pubmed> 19377503 </pubmed></ref>。 | |||
==構造== | ==構造== | ||
===細胞構築=== | ===細胞構築=== | ||
前脳基底部に存在するコリン作動性神経核は吻部から尾部へ向かって順にCh1(内側中隔核)、Ch2(Broca対角帯核)、Ch3(Broca対角水平亜核)、Ch4(無名質-基底核複合体)と命名されており、マイネルト核はCh4に含まれている<ref><pubmed> 6320048 </pubmed></ref><pubmed> 16344145 </pubmed></ref>。マイネルト核を構成するコリン作動性神経細胞の細胞体は中型から大型(直径18~43 &mum)であり、形状は楕円形あるいは紡錘形である<ref name=gp1994>''' Larry L. Butcher'''<br>, 36 Cholinergic Neurons and Networks, George Paxinos editor, The Rat Nervous System Second Edition<br>''Academic Press'':1994</ref>。樹状突起は多極性である<ref name=gp1994 />。ラットでは左右の脳半球それぞれのCh4に7000から9000個のコリン作動性神経細胞が存在する<ref name = LD2004><pubmed> 14650905 </pubmed></ref>。ラットを用いた研究によると、前頭前皮質へ投射するマイネルト核の神経細胞の内19%がコリン作動性であり、52%がギャバ作動性、15%がグルタミン酸作動性である<ref><pubmed> 18279318</pubmed></ref>。 | |||
===出力=== | ===出力=== | ||
マイネルト核の神経細胞は大脳皮質全域および扁桃体へ投射する<ref name =PG1987 /ref>。大脳皮質へのコリン性投射の多くは無髄繊維である<ref>'''Wainer BH, Mesulam M-M'''<br> Ascending cholinergic pathways in the rat brain. In: Steriade M, Biesold D, editors. Brain cholinergic systems<br>''Oxford University Press'':1990, p.65-119.</ref>。大脳皮質におけるコリン性入力の7~8割はマイネルト核からの投射であり<ref>'''Sharon L. Juliano, S. Essie Jacobs'''<br> Thre Rore of Acetylcholine in Barrel Cortex<br>''Plenum Press'':1995</ref><ref><pubmed> 6265265 </pubmed></ref><ref name=gp1994 />、残りの2~3割は大脳皮質に散在する双極性介在神経細胞(GABAおよびVIPを含む<ref><pubmed> 9200749 </pubmed></ref>)からと考えられている。 | |||
マイネルト核からのコリン性軸索は大脳皮質の全層に投射している<ref name = md2000><pubmed> 11064369</pubmed></ref>。このコリン性軸索の単位体積当たりの長さをラットの大脳皮質の層毎に比較すると、前頭葉では差が見られない(12.6~13.5 m/mm<sup>3</sup>)が頭頂葉や後頭葉では差がある<ref name=md2000 />。例えば頭頂葉の第一層では投射繊維の長さが12.8 m/mm<sup>3</sup>に対して、第2/3層や第四層では7.3~8.1 m/mm<sup>3</sup>と短い<ref name=md2000 />。投射繊維の長さを大脳皮質の領域間で比較すると前頭皮質(13.0 m/mm<sup>3</sup>)は頭頂葉(9.9 m/mm<sup>3</sup>)や後頭葉(11.0 m/mm<sup>3</sup>)よりも長い<ref name=md2000 />。これらのコリン性軸索投射には軸索長さ10 &mum当たり4つ程度の軸索瘤(平均直径0.57 &mum)が存在する<ref name=md2000 /><ref name = LD2004 />。軸索瘤の内16%はシナプス性結合を形成し、残りの84%は非シナプス性(asynaptic)に拡散伝達(diffuse transmission)を行う<ref name = LD2004 />。コリン作動性のシナプス数は大脳皮質に存在するシナプス1500個当り1つと想定されている<ref name = LD2004 />。なお、マイネルト核の軸索投射は大脳皮質の神経細胞だけでなく血管にも直接投射していると示唆されている<ref name = PG1987 />。 | |||
===入力=== | ===入力=== | ||
マイネルト核の神経細胞(ACh神経および非ACh神経)へは脳幹網様体賦活系からの軸索投射がある。この投射は視床下部の内側前脳束を上行しており、種々の伝達物質(ドパミン、コリン、セロトニン、ノルアドレナリン、グルタミン酸)を含む神経線維によって構成されている<ref name=as2006>'''有田秀穂'''<br>脳内物質のシステム神経生理学<br>''中外医学社'':2006</ref>。これらの内でマイネルト核のコリン作動性神経細胞へ直接投射しているのは青斑核のノルアドレナリン(NA)神経と背側縫線核のセロトニン(5-HT)神経、網様体のグルタミン酸(Glu)神経である<ref name = BJ1999>'''Jones BE, Muhlethaler M'''<br> Cholinergic and GABAergic neurons of the basal forebrain : role in cortical activation. In: Lydic R, Baghdoyan HA, editors. Handbook of behavioral state control<br>’’London CRC Press’’:1999, p.213-233.</ref>。マイネルト核のコリン作動性神経細胞に対してGluとNAは興奮性に作用し、5-HTは抑制性に作用する<ref name=as2006 />。�^%$%M%k%H3K$N�GABA神経細胞はNAやAChに対する応答性の違いからいくつかに分類されている<ref name = BJ1999 />。多くのGABA神経細胞はNAによって興奮するが、抑制されるものも存在する<ref name = BJ1999 />。 | |||
==生理機能== | ==生理機能== | ||
===脳波制御=== | ===脳波制御=== | ||
電気刺激などによってマイネルト核を活性化させると大脳皮質において細胞外アセチルコリン量が増す<ref><pubmed> 2565563 </pubmed></ref>と共に、大脳皮質脳波の徐波成分(デルタ波)が減少し、速波成分(シータ波とガンマ波)が増える<ref name = BJ2003 />。この脳波の変化はムスカリン性ACh受容体への拮抗薬によって抑制される<ref><pubmed> 1361197 </pubmed></ref>。なお、マイネルト核のコリン性神経細胞は、覚醒時やREM睡眠時に発火活動が亢進しているが<ref name = BJ2003 /><ref><pubmed> 12700104 </pubmed></ref>、非コリン性神経細胞の活動には一定の傾向は見られていない<ref name = BJ2003 />。 | |||
===皮質可塑性=== | ===皮質可塑性=== | ||
音刺激やヒゲ刺激などの末梢感覚への刺激と、マイネルト核への電気刺激とを同時に繰り返し与えると、その末梢刺激に対する大脳皮質の神経細胞応答が増大する<ref><pubmed> 9497289 </pubmed></ref><ref><pumbed> 3384031 </pubmed></ref>。この仕組みとして、マイネルト核の活性化によって大脳皮質で放出されたアセチルコリンがムスカリン性受容体を介して大脳皮質神経細胞を脱抑制し、これに引き続いて神経細胞の興奮性が亢進する機構が提唱されている<ref><ref><pubmed> 18004384 </pubmed><ref>。さらにマイネルト核による皮質可塑性の発現には大脳皮質グリア細胞のCa<sup>2+</sup>活動が必要であるとの結果も報告されている<ref><pubmed> 22159127 </pubmed></ref>。なお、アルツハイマー病患者の脳ではマイネルト核の神経細胞が脱落することが知られている<ref><pubmed> 7058341 </pubmed></ref>。 | |||
===血流制御=== | ===血流制御=== | ||
電気刺激やグルタミン酸の局所投与によってマイネルト核を活性化させると大脳皮質の血流が増大する<ref><pubmed> 2565562 </pubmed></ref><ref><pubmed>14650915</pubmed><ref>。マイネルト核が大脳皮質へ放出したアセチルコリンがムスカリン性受容体を介して神経細胞やグリア細胞、脳血管へ作用することで血流が増大する<ref><pubmed> 22293985 </pubmed></ref>。 | |||
==関連語== | ==関連語== | ||
*[[アセチルコリン]] | *[[アセチルコリン]] | ||
*[[脚橋被蓋核]] | *[[脚橋被蓋核]] | ||
*[[アルツハイマー病]] | *[[アルツハイマー病]] | ||
68行目: | 38行目: | ||
==参考文献== | ==参考文献== | ||
<references /> | <references /> | ||
(執筆者:高田則雄 担当編集委員:岡本仁) | |||
==図== | |||
fig | |||
マイネルト核の場所とその投射 鳥瞰図 Luiten 1987 Fig 10 |
2013年3月15日 (金) 15:11時点における版
[[image:
英:Nucleus basalis of Meynert 羅:nucleus basalis telencephali
英略称:NBM
同義語:マイネルト基底核
マイネルト核は前脳基底部に存在する神経核であり、そのコリン性神経細胞は淡蒼球と内包との境界に散在する[1]。求心性の軸索を大脳皮質の広範囲へ投射する[2]。マイネルト核はコリン作動性の神経核として知られてきたが、アセチルコリン(acetylcholine, ACh)を含む神経細胞だけでなく、GABAあるいはグルタミン酸を含む神経細胞も存在する[3]。関与する機能としては、皮質可塑性[4]、睡眠と覚醒引用エラー: <ref>
タグに対応する </ref>
タグが不足しています[5]。
構造
細胞構築
前脳基底部に存在するコリン作動性神経核は吻部から尾部へ向かって順にCh1(内側中隔核)、Ch2(Broca対角帯核)、Ch3(Broca対角水平亜核)、Ch4(無名質-基底核複合体)と命名されており、マイネルト核はCh4に含まれている[6]
Zaborszky, L., Buhl, D.L., Pobalashingham, S., Bjaalie, J.G., & Nadasdy, Z. (2005).
Three-dimensional chemoarchitecture of the basal forebrain: spatially specific association of cholinergic and calcium binding protein-containing neurons. Neuroscience, 136(3), 697-713.
[PubMed:16344145]
[PMC]
[WorldCat]
[DOI]
</ref>。マイネルト核を構成するコリン作動性神経細胞の細胞体は中型から大型(直径18~43 &mum)であり、形状は楕円形あるいは紡錘形である[7]。樹状突起は多極性である[7]。ラットでは左右の脳半球それぞれのCh4に7000から9000個のコリン作動性神経細胞が存在する[8]。ラットを用いた研究によると、前頭前皮質へ投射するマイネルト核の神経細胞の内19%がコリン作動性であり、52%がギャバ作動性、15%がグルタミン酸作動性である[9]。
出力
マイネルト核の神経細胞は大脳皮質全域および扁桃体へ投射する引用エラー: 無効な <ref>
タグです。数が多すぎるなどの理由で名前が無効です。大脳皮質におけるコリン性入力の7~8割はマイネルト核からの投射であり[10][11][7]、残りの2~3割は大脳皮質に散在する双極性介在神経細胞(GABAおよびVIPを含む[12])からと考えられている。
マイネルト核からのコリン性軸索は大脳皮質の全層に投射している[13]。このコリン性軸索の単位体積当たりの長さをラットの大脳皮質の層毎に比較すると、前頭葉では差が見られない(12.6~13.5 m/mm3)が頭頂葉や後頭葉では差がある[13]。例えば頭頂葉の第一層では投射繊維の長さが12.8 m/mm3に対して、第2/3層や第四層では7.3~8.1 m/mm3と短い[13]。投射繊維の長さを大脳皮質の領域間で比較すると前頭皮質(13.0 m/mm3)は頭頂葉(9.9 m/mm3)や後頭葉(11.0 m/mm3)よりも長い[13]。これらのコリン性軸索投射には軸索長さ10 &mum当たり4つ程度の軸索瘤(平均直径0.57 &mum)が存在する[13][8]。軸索瘤の内16%はシナプス性結合を形成し、残りの84%は非シナプス性(asynaptic)に拡散伝達(diffuse transmission)を行う[8]。コリン作動性のシナプス数は大脳皮質に存在するシナプス1500個当り1つと想定されている[8]。なお、マイネルト核の軸索投射は大脳皮質の神経細胞だけでなく血管にも直接投射していると示唆されている[2]。
入力
マイネルト核の神経細胞(ACh神経および非ACh神経)へは脳幹網様体賦活系からの軸索投射がある。この投射は視床下部の内側前脳束を上行しており、種々の伝達物質(ドパミン、コリン、セロトニン、ノルアドレナリン、グルタミン酸)を含む神経線維によって構成されている[14]。これらの内でマイネルト核のコリン作動性神経細胞へ直接投射しているのは青斑核のノルアドレナリン(NA)神経と背側縫線核のセロトニン(5-HT)神経、網様体のグルタミン酸(Glu)神経である[15]。マイネルト核のコリン作動性神経細胞に対してGluとNAは興奮性に作用し、5-HTは抑制性に作用する[14]。�^%$%M%k%H3K$N�GABA神経細胞はNAやAChに対する応答性の違いからいくつかに分類されている[15]。多くのGABA神経細胞はNAによって興奮するが、抑制されるものも存在する[15]。
生理機能
脳波制御
電気刺激などによってマイネルト核を活性化させると大脳皮質において細胞外アセチルコリン量が増す[16]と共に、大脳皮質脳波の徐波成分(デルタ波)が減少し、速波成分(シータ波とガンマ波)が増える[17]。この脳波の変化はムスカリン性ACh受容体への拮抗薬によって抑制される[18]。なお、マイネルト核のコリン性神経細胞は、覚醒時やREM睡眠時に発火活動が亢進しているが[17][19]、非コリン性神経細胞の活動には一定の傾向は見られていない[17]。
皮質可塑性
音刺激やヒゲ刺激などの末梢感覚への刺激と、マイネルト核への電気刺激とを同時に繰り返し与えると、その末梢刺激に対する大脳皮質の神経細胞応答が増大する[20][21]。この仕組みとして、マイネルト核の活性化によって大脳皮質で放出されたアセチルコリンがムスカリン性受容体を介して大脳皮質神経細胞を脱抑制し、これに引き続いて神経細胞の興奮性が亢進する機構が提唱されている引用エラー: <ref>
タグに対応する </ref>
タグが不足しています。なお、アルツハイマー病患者の脳ではマイネルト核の神経細胞が脱落することが知られている[22]。
血流制御
電気刺激やグルタミン酸の局所投与によってマイネルト核を活性化させると大脳皮質の血流が増大する[23]引用エラー: <ref>
タグに対応する </ref>
タグが不足しています。
関連語
参考文献
- ↑
Kitt, C.A., Höhmann, C., Coyle, J.T., & Price, D.L. (1994).
Cholinergic innervation of mouse forebrain structures. The Journal of comparative neurology, 341(1), 117-29. [PubMed:8006218] [WorldCat] [DOI] - ↑ 2.0 2.1
Luiten, P.G., Gaykema, R.P., Traber, J., & Spencer, D.G. (1987).
Cortical projection patterns of magnocellular basal nucleus subdivisions as revealed by anterogradely transported Phaseolus vulgaris leucoagglutinin. Brain research, 413(2), 229-50. [PubMed:3300852] [WorldCat] [DOI] - ↑
Henny, P., & Jones, B.E. (2008).
Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. The European journal of neuroscience, 27(3), 654-70. [PubMed:18279318] [PMC] [WorldCat] [DOI] - ↑
Rasmusson, D.D. (2000).
The role of acetylcholine in cortical synaptic plasticity. Behavioural brain research, 115(2), 205-18. [PubMed:11000421] [WorldCat] [DOI] - ↑
Sarter, M., Parikh, V., & Howe, W.M. (2009).
Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nature reviews. Neuroscience, 10(5), 383-90. [PubMed:19377503] [PMC] [WorldCat] [DOI] - ↑
Mesulam, M.M., Mufson, E.J., Wainer, B.H., & Levey, A.I. (1983).
Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience, 10(4), 1185-201. [PubMed:6320048] [WorldCat] [DOI] - ↑ 7.0 7.1 7.2 Larry L. Butcher
, 36 Cholinergic Neurons and Networks, George Paxinos editor, The Rat Nervous System Second Edition
Academic Press:1994 - ↑ 8.0 8.1 8.2 8.3
Descarries, L., Mechawar, N., Aznavour, N., & Watkins, K.C. (2004).
Structural determinants of the roles of acetylcholine in cerebral cortex. Progress in brain research, 145, 45-58. [PubMed:14650905] [WorldCat] [DOI] - ↑
Henny, P., & Jones, B.E. (2008).
Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. The European journal of neuroscience, 27(3), 654-70. [PubMed:18279318] [PMC] [WorldCat] [DOI] - ↑ Sharon L. Juliano, S. Essie Jacobs
Thre Rore of Acetylcholine in Barrel Cortex
Plenum Press:1995 - ↑
Johnston, M.V., McKinney, M., & Coyle, J.T. (1981).
Neocortical cholinergic innervation: a description of extrinsic and intrinsic components in the rat. Experimental brain research, 43(2), 159-72. [PubMed:6265265] [WorldCat] [DOI] - ↑
Bayraktar, T., Staiger, J.F., Acsady, L., Cozzari, C., Freund, T.F., & Zilles, K. (1997).
Co-localization of vasoactive intestinal polypeptide, gamma-aminobutyric acid and choline acetyltransferase in neocortical interneurons of the adult rat. Brain research, 757(2), 209-17. [PubMed:9200749] [WorldCat] [DOI] - ↑ 13.0 13.1 13.2 13.3 13.4
Mechawar, N., Cozzari, C., & Descarries, L. (2000).
Cholinergic innervation in adult rat cerebral cortex: a quantitative immunocytochemical description. The Journal of comparative neurology, 428(2), 305-18. [PubMed:11064369] [WorldCat] [DOI] - ↑ 14.0 14.1 有田秀穂
脳内物質のシステム神経生理学
中外医学社:2006 - ↑ 15.0 15.1 15.2 Jones BE, Muhlethaler M
Cholinergic and GABAergic neurons of the basal forebrain : role in cortical activation. In: Lydic R, Baghdoyan HA, editors. Handbook of behavioral state control
’’London CRC Press’’:1999, p.213-233. - ↑
Kurosawa, M., Sato, A., & Sato, Y. (1989).
Stimulation of the nucleus basalis of Meynert increases acetylcholine release in the cerebral cortex in rats. Neuroscience letters, 98(1), 45-50. [PubMed:2565563] [WorldCat] [DOI] - ↑ 17.0 17.1 17.2 引用エラー: 無効な
<ref>
タグです。「BJ2003
」という名前の注釈に対するテキストが指定されていません - ↑
Metherate, R., Cox, C.L., & Ashe, J.H. (1992).
Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. The Journal of neuroscience : the official journal of the Society for Neuroscience, 12(12), 4701-11. [PubMed:1361197] [WorldCat] - ↑
Jones, B.E. (2003).
Arousal systems. Frontiers in bioscience : a journal and virtual library, 8, s438-51. [PubMed:12700104] [WorldCat] [DOI] - ↑
Kilgard, M.P., & Merzenich, M.M. (1998).
Cortical map reorganization enabled by nucleus basalis activity. Science (New York, N.Y.), 279(5357), 1714-8. [PubMed:9497289] [WorldCat] [DOI] - ↑ <pumbed> 3384031 </pubmed>
- ↑
Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T., & Delon, M.R. (1982).
Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science (New York, N.Y.), 215(4537), 1237-9. [PubMed:7058341] [WorldCat] [DOI] - ↑
Biesold, D., Inanami, O., Sato, A., & Sato, Y. (1989).
Stimulation of the nucleus basalis of Meynert increases cerebral cortical blood flow in rats. Neuroscience letters, 98(1), 39-44. [PubMed:2565562] [WorldCat] [DOI]
(執筆者:高田則雄 担当編集委員:岡本仁)
図
fig マイネルト核の場所とその投射 鳥瞰図 Luiten 1987 Fig 10