「グリア細胞」の版間の差分

編集の要約なし
編集の要約なし
9行目: 9行目:
同義語:膠細胞、神経膠細胞
同義語:膠細胞、神経膠細胞


{{box|text= 脳に分布する主なグリア細胞はアストロサイト、オリゴデンドロサイトおよびミクログリアの三種に分類される。ヒトの脳におけるこれらグリア細胞全体の数はニューロンの数を遙かに上回る。しかし、電気的には不活性なこれらの細胞の中枢神経系における機能は発見以来、長い間、過小評価されてきた。しかし、20世紀後半からグリア細胞の新しい側面が浮き彫りにされてきたのである。ニューロンやシナプスの維持や管理機能に加えて、ニューロンとのダイナミックな情報交換によってニューロン活動やシナプス構築に直接関わっていることが明らかになってきたのだ。この事実はこれまでのニューロンのみを中心とした脳研究では脳機能の全貌を解き明かすことは困難であることを意味している。この項では三種のグリア細胞の形態と機能から細胞の脳機能発現における役割と重要性を述べる。}}
{{box|text= 脳に分布する主なグリア細胞は[[アストロサイト]]、[[オリゴデンドロサイト]]および[[ミクログリア]]の三種に分類される。[[ヒト]]の脳におけるこれらグリア細胞全体の数は[[ニューロン]]の数を遙かに上回る。しかし、電気的には不活性なこれらの細胞の[[中枢神経系]]における機能は発見以来、長い間、過小評価されてきた。しかし、20世紀後半からグリア細胞の新しい側面が浮き彫りにされてきたのである。ニューロンや[[シナプス]]の維持や管理機能に加えて、ニューロンとのダイナミックな情報交換によってニューロン活動やシナプス構築に直接関わっていることが明らかになってきた。この事実はこれまでのニューロンのみを中心とした脳研究では脳機能の全貌を解き明かすことは困難であることを意味している。この項では三種のグリア細胞の形態と機能から細胞の脳機能発現における役割と重要性を述べる。(抄録ですので、具体的にどのように重要かを端的に御記述下さい)}}


==発見==
==発見==
 グリア細胞のgliaは[[ニューロン]]とニューロンの間の空間を埋める糊やセメントのような物質という意味のNerven Kitteが語源となっている。病理学者の[[wj:ルドルフ・ルートヴィヒ・カール・ウィルヒョー|ルドルフ・ウイルヒョー]](Rudolph Virchow)が1846年に発表した論文に記載されている当時の組織染色技術では細胞の形を捉えることができなかったので、とりあえず、「神経の間を埋める何らかの物質」というような意味としての定義したのだろう。ウイルヒョーはやがてこれが細胞であることをつきとめて、細胞病理学の教科書には結合組織細胞と記載している(1858年)。その後、[[w:Otto Deiters|オットー・ダイテルス]](Otto Deiters) 、ミカエル・レンホサック(Michael von Lenhossek)、ウイルヘルム・ヒス(Wilhelm His)など19世紀末に活躍した多くの著名な神経組織学者がこの細胞の存在に興味を持ち、多様な形態や脳内分布の特徴を報告している。英語ではNeuroglia訳され、日本語では「膠(こう)細胞」(膠はにかわと呼ばれるコラーゲンを原料とする古い接着剤)と訳される。やがて、細胞染色法の発達によって、その実体が少しずつ明らかにされてきたが、カミロ・ゴルジ(Camillo Golgi)が確立したゴルジ染色法により、ニューロンと共にこの細胞の形態も浮き彫りになってきた。現在、グリア細胞の一つとして、よく知られている[[アストロサイト]](astrocyte:アストログリア,astroglia)という名称を与えたのはレンホサックであるが、その実体を最も正確に記載したのがラモン・イ・カハール(Santiago Ramon y Cajal)である。ゴルジ染色を改良した染色法によって様々な形態のアストロサイトを観察している。その後、ピオ・デル・リオ-オルテガ(Pio del Rio-Hortega)がニューロン、アストロサイトに次ぐ第三の細胞群として、[[オリゴデンドロサイト]](oligodendrocyte:[[オリゴデンドログリア]]:oligodendroglia)と[[ミクログリア]](microglia)の存在を報告している(1921)(グリア細胞発見の歴史については文献<ref>'''H Kettenmann, B R Ranson'''<br>Neuroglia 2nd Ed<br>''Oxford University Press(New York)''2005</ref>および<ref name=ref2>'''工藤佳久'''<br>脳とグリア細胞<br>''技術評論社(東京)''2011</ref>を参照)。すなわち、これらの脳を構成する主要な細胞としてのグリア細胞群の存在は、ニューロンとほぼ同時代に発見されていたのである。現在、グリア細胞は、大グリア細胞(macroglia:アストロサイトとオリゴデンドロサイト)と、小グリア細胞(microglia:ミクログリア)に分類されている。
 グリア細胞のgliaはニューロンとニューロンの間の空間を埋める糊やセメントのような物質という意味のNerven Kitteが語源となっている。病理学者の[[wj:ルドルフ・ルートヴィヒ・カール・ウィルヒョー|ルドルフ・ウイルヒョー]](Rudolph Virchow)が1846年に発表した論文に記載されている当時の[[組織染色]]技術では細胞の形を捉えることができなかったので、とりあえず、「神経の間を埋める何らかの物質」というような意味としての定義したのだろう。ウイルヒョーはやがてこれが細胞であることをつきとめて、細胞病理学の教科書には結合組織細胞と記載している(1858年)。その後、[[w:Otto Deiters|オットー・ダイテルス]](Otto Deiters) [[w:Mihály Lenhossék|ミカエル・レンホサック]] (Michael von Lenhossék)[[e:Wilhelm His, Sr.|ウイルヘルム・ヒス]](Wilhelm His)など19世紀末に活躍した多くの著名な神経組織学者がこの細胞の存在に興味を持ち、多様な形態や脳内分布の特徴を報告している。英語ではNeurogliaと訳され、日本語では「膠(こう)細胞」(膠はにかわと呼ばれるコラーゲンを原料とする古い接着剤)と訳される。


 存在部位や機能によってその形態には多様性があり、それぞれが持つ特異的抗原分子によって分類される。現在は脳の第二の主役と呼ばれるほどに機能の重要さが注目されるようになってきている。多くのグリア細胞に関する叢書の序論にはヒトの脳におけるグリア細胞脳存在量はニューロンの10倍近くと述べられているが、その根拠は曖昧である。しかし、哺乳動物の脳におけるグリア細胞の分布比は脳が発達に伴って高くなっており<ref><pubmed>4945394</pubmed></ref>、また、他の霊長類(チンパンジーやゴリラなど)と比較しても高いことが明らかにされているので、脳の進化とグリア細胞の数には何らかの相関がある可能性は高い<ref><pubmed>16938869</pubmed></ref>。
 やがて、細胞染色法の発達によって、その実体が少しずつ明らかにされてきたが、[[wj:カミッロ・ゴルジ|カミロ・ゴルジ]] (Camillo Golgi)が確立した[[ゴルジ染色]]法により、ニューロンと共にこの細胞の形態も浮き彫りになってきた。現在、グリア細胞の一つとして、よく知られている[[アストロサイト]](astrocyte:アストログリア,astroglia)という名称を与えたのはレンホサックであるが、その実体を最も正確に記載したのが[[wj:サンティアゴ・ラモン・イ・カハール|ラモン・イ・カハール]] (Santiago Ramon y Cajal)である。ゴルジ染色を改良した染色法によって様々な形態のアストロサイトを観察している。その後、[[w:Pío del Río Hortega|ピオ・デル・リオ-オルテガ]](Pío del Río Hortega)がニューロン、アストロサイトに次ぐ第三の細胞群として、[[オリゴデンドロサイト]] (oligodendrocyte:[[オリゴデンドログリア]]:oligodendroglia)と[[ミクログリア]] (microglia)の存在を報告している(1921)(グリア細胞発見の歴史については文献<ref>'''H Kettenmann, B R Ranson'''<br>Neuroglia 2nd Ed<br>''Oxford University Press(New York)''2005</ref>および<ref name=ref2>'''工藤佳久'''<br>脳とグリア細胞<br>''技術評論社(東京)''2011</ref>を参照)。すなわち、これらの脳を構成する主要な細胞としてのグリア細胞群の存在は、ニューロンとほぼ同時代に発見されていたのである。現在、グリア細胞は、[[大グリア細胞]](macroglia:アストロサイトとオリゴデンドロサイト)と、[[小グリア細胞]](microglia:ミクログリア)に分類されている。
 
 存在部位や機能によってその形態には多様性があり、それぞれが持つ特異的[[w:抗原|抗原]]分子によって分類される。現在は脳の第二の主役と呼ばれるほどに機能の重要さが注目されるようになってきている。多くのグリア細胞に関する叢書の序論にはヒトの脳におけるグリア細胞脳存在量はニューロンの10倍近くと述べられているが、その根拠は曖昧である。しかし、[[哺乳動物]]の脳におけるグリア細胞の分布比は脳が発達に伴って高くなっており<ref><pubmed>4945394</pubmed></ref>、また、他の[[霊長類]]([[チンパンジー]]や[[ゴリラ]]など)と比較しても高いことが明らかにされているので、脳の進化とグリア細胞の数には何らかの相関がある可能性は高い<ref><pubmed>16938869</pubmed></ref>。


==発生==
==発生==
[[ファイル:Kudo Fig1.png|thumb|right|450px|'''図1 ニューロンとグリア細胞の発生'''<br>まず、マトリックス細胞から神経幹細胞が作られる。十分な神経細胞ができると、マトリックス細胞は海綿芽細胞にスイッチし、グリオブラストをつくる、これがアストロサイトとオリゴデンドロサイトに分化する。<ref name=ref14304273 />の図を参考にして作成]]
[[ファイル:Kudo Fig1.png|thumb|right|450px|'''図1 ニューロンとグリア細胞の発生'''<br>まず、マトリックス細胞から神経幹細胞が作られる。十分な神経細胞ができると、マトリックス細胞は海綿芽細胞にスイッチし、グリオブラストをつくる、これがアストロサイトとオリゴデンドロサイトに分化する。<ref name=ref14304273 />の図を参考にして作成]]
 20世紀の半ばまで、グリア細胞の発生については1889年にウイルヘルム・ヒス(Wilhenlm His)が提唱した二元説を基にして構築されていた。すなわち、神経細胞は胚芽細胞(germinal cell)を起源とする[[神経幹細胞]](neuroblast)から発生し、グリア細胞は海綿芽細胞(sponginoblast)を起源とするグリア幹細胞(glioblast)から発生する。これらの幹細胞はほぼ同時期に作られ、それらがニューロンとグリア細胞を同時並行的に作り出すという学説が確立されてきた。しかし、それに対して、日本の解剖学者、藤田晢也(Setsuya Fujita)がト[[リチウム]]・チミジン・オートラジオグラフィー法を用いて、初期[[神経管]]における分裂細胞の動態を解析することによって、それまで海綿細胞(sponginoblast)または[[放射状グリア]](radial glia)と呼ばれていた細胞が、すべて胚芽細胞であり、その核の周囲部が分裂サイクルに同期してエレベータ運動を生ずることを発見した<ref><pubmed>13825588</pubmed></ref>。すなわち、この時期の神経管には均質な細胞しか存在せず、この細胞は神経およびグリア細胞の発生の基盤になるものであり、マトリックス細胞(matrix cell)と呼ばれるべきものである。藤田はこのマトリックス細胞が不均一分裂し、マトリックスス細胞と神経幹細胞(neuroblast)が生ずることを明らかにしたのだ<ref><pubmed>14184856</pubmed></ref>。発生の初期の段階で、マトリックス細胞はこの分裂周期を繰り返すことによって、次々に神経幹細胞を造り出し、それらがニューロンに[[分化]]する。十分な量のニューロンができると、やがて、マトリクス細胞は[[脳室]]上衣グリア幹細胞(ependymoglioblast)にスイッチし、そこからグリア幹細胞が造られるようになることを証明した<ref name=ref14304273><pubmed>14304273</pubmed></ref>(図1)。アストロサイトもオリゴデンドロサイトもこのようにして造り出されることが明らかにされている。当然のことながら、藤田学説は猛烈な反対を受ける。そして、1970年のアメリカの神経発生学者達によって「神経系の細胞発生における命名法の改変に関する委員会」(ボールダー委員会)によって、藤田説は否定された。しかし、現在は遺伝子発現の解析などで藤田説が正しいことが認められている。それにもかかわらず、ボールダー委員会の決議が撤回されたとは聞いていない。
 20世紀の半ばまで、グリア細胞の発生については1889年にヒスが提唱した二元説を基にして構築されていた。すなわち、神経細胞は[[胚芽細胞]](germinal cell)を起源とする[[神経幹細胞]](neuroblast)から発生し、グリア細胞は[[海綿芽細胞]](spongioblast)を起源とする[[グリア幹細胞]](glioblast)から発生する。これらの幹細胞はほぼ同時期に作られ、それらがニューロンとグリア細胞を同時並行的に作り出すという学説が確立されてきた。


 ミクログリアの発生についてはまだ議論が定着したとはいいきれない。アストロサイトやオリゴデンドロサイトと同様にグリア幹細胞から分化してくる細胞と考えるグループもある。しかし、最近になって、ミクログリアの起源は胎児期に卵黄嚢で造血細胞から分化して、神経管に浸入してくる中胚葉起源の細胞であることを示す証拠が報告されている<ref><pubmed>21125659</pubmed></ref>。しかし、ここでは最終的結論には至っていないとしておこう。
 しかし、それに対して、日本の解剖学者、藤田晢也が[<sup>3</sup>H]-[[wj:チミジン|チミジン]]・[[wj:オートラジオグラフィー|オートラジオグラフィー]]法を用いて、初期[[神経管]]における分裂細胞の動態を解析することによって、それまで海綿芽細胞または[[放射状グリア]] (radial glia)と呼ばれていた細胞が、すべて胚芽細胞であり、その核の周囲部が分裂サイクルに同期して[[エレベータ運動]]を生ずることを発見した<ref><pubmed>13825588</pubmed></ref>。すなわち、この時期の神経管には均質な細胞しか存在せず、この細胞は神経およびグリア細胞の発生の基盤になるものであり、[[マトリックス細胞]](matrix cell)と呼ばれるべきものである。藤田はこのマトリックス細胞が不均一分裂し、マトリックスス細胞と神経幹細胞が生ずることを明らかにしたのだ<ref><pubmed>14184856</pubmed></ref>。発生の初期の段階で、マトリックス細胞はこの分裂周期を繰り返すことによって、次々に神経幹細胞を造り出し、それらがニューロンに[[分化]]する。十分な量のニューロンができると、やがて、マトリクス細胞は[[脳室上衣グリア幹細胞]] (ependymoglioblast)にスイッチし、そこからグリア幹細胞が造られるようになることを証明した<ref name=ref14304273><pubmed>14304273</pubmed></ref>(図1)。アストロサイトもオリゴデンドロサイトもこのようにして造り出されることが明らかにされている。当然のことながら、藤田学説は猛烈な反対を受ける。そして、1970年のアメリカの神経発生学者達によって「神経系の細胞発生における命名法の改変に関する委員会」(ボールダー委員会)によって、藤田説は否定された。しかし、現在は遺伝子発現の解析などで藤田説が正しいことが認められている。それにもかかわらず、ボールダー委員会の決議が撤回されたとは聞いていない。
 
 ミクログリアの発生についてはまだ議論が定着したとはいいきれない。アストロサイトやオリゴデンドロサイトと同様にグリア幹細胞から分化してくる細胞と考えるグループもある。しかし、最近になって、ミクログリアの起源は[[wj:胎児期|胎児期]]に[[wj:卵黄嚢|卵黄嚢]]で[[wj:造血細胞|造血細胞]]から分化して、神経管に浸入してくる中胚葉起源の細胞であることを示す証拠が報告されている<ref><pubmed>21125659</pubmed></ref>。しかし、ここでは最終的結論には至っていないとしておこう。


==アストロサイト==
==アストロサイト==
[[ファイル:Kudo Fig2.png|thumb|right|350px|'''図2 アストロサイトの形態'''<br>'''A.''' GFAP抗体で標識したアストロサイト(脳スライス培養標本)(著者原図)<br>'''B.''' ゴルジ染色されたアストロサイト(超高圧電子顕微鏡による立体画像)(濱 清先生提供)]]
[[ファイル:Kudo Fig2.png|thumb|right|350px|'''図2 アストロサイトの形態'''<br>'''A.''' GFAP抗体で標識したアストロサイト(脳スライス培養標本)(著者原図)<br>'''B.''' ゴルジ染色されたアストロサイト(超高圧電子顕微鏡による立体画像)(濱 清先生提供)]]
=== 名称と形態の特徴 ===
=== 名称と形態の特徴 ===
 日本語では星状膠細胞と訳されている。その名はミカエル・レンホサックにより「星のような」細胞という意味で命名されて、現在に至っている。発見当初の細胞染色法ではこの細胞の骨格部分のみを染色していたために星のように見えたのだ。前述のようにアストロサイトが組織学的にニューロンとは異なった第二の脳細胞であることを正確に記載したのはカハール(1913)である。
 日本語では[[星状膠細胞]]と訳されている。その名はレンホサックにより「星のような」細胞という意味で命名されて、現在に至っている。発見当初の細胞染色法ではこの細胞の骨格部分のみを染色していたために星のように見えたのだ。前述のようにアストロサイトが組織学的にニューロンとは異なった第二の脳細胞であることを正確に記載したのはカハール(1913)である。
超高圧電子顕微鏡による三次元形態解析によりアストロサイトは多数の突起がさらに細かく分岐し、その先端をシート状に広げていることが明らかにされている<ref><pubmed>15475683</pubmed></ref>。したがって、全体としては星状というよりスポンジ状であり、大きな表面積を持つ細胞である(図2)。しかし、脳内でアストロサイトが占める空間の大きさは絶対数のみではなく一つのアストロサイトのサイズとその突起の広がりにも依存する。ラットのアストロサイトの直径は30から60&mu mであり、3~4本の突起を伸ばしている。その結果、一個のアストロサイトが占める空間は66000&mu m<sup>3</Sup>に及ぶ。それに対して、ヒトのアストロサイトの直径は100~200&mu mであり、その上、突起の数は40本を超えるので、その総体積はラットのアストロサイトの27倍にも及ぶ。ラットでは一個のアストロサイトに約9万個のシナプスが被われていると推定されている。これをヒトのアストロサイトに当てはめると、一個あたり、200万個以上のシナプスを被っていることになる<ref><pubmed>12815249</pubmed></ref>。
 
 [[超高圧電子顕微鏡]]による三次元形態解析によりアストロサイトは多数の突起がさらに細かく分岐し、その先端をシート状に広げていることが明らかにされている<ref><pubmed>15475683</pubmed></ref>。したがって、全体としては星状というよりスポンジ状であり、大きな表面積を持つ細胞である(図2)。しかし、脳内でアストロサイトが占める空間の大きさは絶対数のみではなく一つのアストロサイトのサイズとその突起の広がりにも依存する。[[ラット]]のアストロサイトの直径は30から60 &mu;mであり、3~4本の突起を伸ばしている。その結果、一個のアストロサイトが占める空間は66000 &mu;m<sup>3</Sup>に及ぶ。それに対して、ヒトのアストロサイトの直径は100~200 &mu;mであり、その上、突起の数は40本を超えるので、その総体積はラットのアストロサイトの27倍にも及ぶ。ラットでは一個のアストロサイトに約9万個のシナプスが被われていると推定されている。これをヒトのアストロサイトに当てはめると、一個あたり、200万個以上のシナプスを被っていることになる<ref><pubmed>12815249</pubmed></ref>。


====同種の細胞====
====同種の細胞====
アストロサイトの同種と考えられる細胞は脳室[[上衣細胞]](ependemoglia)、小脳のバーグマン細胞(Bergmann glia)、網膜に分布するミューラー細胞(Muller cell)など多様である。しかし、これらの形は決して星の様な形はとっていない。
 アストロサイトの同種と考えられる細胞は[[脳室]][[上衣細胞]](ependemoglia)、[[小脳]]の[[バーグマン細胞]] (Bergmann glia)、[[網膜]]に分布する[[ミュラー細胞]](Müller cell)など多様である。しかし、これらの形は決して星の様な形はとっていない。


====マーカー分子====
====マーカー分子====
 アストロサイトまたはその同類の細胞を同定するためのマーカータンパク質として、glial fibrillary acidic protein(GFAP)、vimentin、S-100βなど多様な分子が確認されている。これらは多くの同種細胞に発現する。しかし、どの分子もすべての種類のアストロサイトに対応するものではない。また、分布する部位や、発達時期、障害の有無によって発現の程度が異なり、まったく発現しない場合もあるので、同定には注意を要する。
 アストロサイトまたはその同類の細胞を同定するためのマーカータンパク質として、[[グリア線維性酸性タンパク質]] (glial fibrillary acidic protein, GFAP)、[[ビメンチン]]、[[S100タンパク質|S100β]]など多様な分子が確認されている。これらは多くの同種細胞に発現する。しかし、どの分子もすべての種類のアストロサイトに対応するものではない。また、分布する部位や、発達時期、障害の有無によって発現の程度が異なり、まったく発現しない場合もあるので、同定には注意を要する。


====ヒト脳における分布量====  
====ヒト脳における分布量====  
 ヒトの大脳皮質においてはニューロンの1.4倍ほど分布していると推定されている。これはラットやマウスの5倍に及ぶとされている<ref><pubmed>14522144</pubmed></ref>。しかし、高次機能におけるアストロサイトの重要性を主張するにはあまりインパクトのない分布量の差である。しかし、この数よりも上述のようなヒトのアストロサイトがラットのそれより27倍も大きな空間を占めるという点に注目すべきであろう。ヒトでは一個のアストロサイトが200万個以上のシナプスを被い、それがラットの5倍も存在するのだから、脳機能の進化との関連性を強く示唆すると考えることに異論はないだろう。アインシュタイン(Albert Einstein)の脳ではニューロンに対するアストロサイトの量が多かったという報告もある<ref><pubmed>3979509</pubmed></ref>。もちろん、同年齢の健康なヒトの脳のデータとの比較であるが、有意差を求めることは難しい。しかし、アストロサイトが単なる支持細胞としてだけではなく、脳の機能の高度化にも関わっている可能性を支持する証拠の一つとして挙げたくなる気持ちはわかる。
 ヒトの大脳皮質においてはニューロンの1.4倍ほど分布していると推定されている。これはラットやマウスの5倍に及ぶとされている<ref><pubmed>14522144</pubmed></ref>。しかし、高次機能におけるアストロサイトの重要性を主張するにはあまりインパクトのない分布量の差である。しかし、この数よりも上述のようなヒトのアストロサイトがラットのそれより27倍も大きな空間を占めるという点に注目すべきであろう。ヒトでは一個のアストロサイトが200万個以上のシナプスを被い、それがラットの5倍も存在するのだから、脳機能の進化との関連性を強く示唆すると考えることに異論はないだろう。[[wj:アインシュタイン|アインシュタイン]](Albert Einstein)の脳ではニューロンに対するアストロサイトの量が多かったという報告もある<ref><pubmed>3979509</pubmed></ref>。もちろん、同年齢の健康なヒトの脳のデータとの比較であるが、有意差を求めることは難しい。しかし、アストロサイトが単なる支持細胞としてだけではなく、脳の機能の高度化にも関わっている可能性を支持する証拠の一つとして挙げたくなる気持ちはわかる。(編集コメント:辞典ですので、個人の感想は極力避けて頂きますように御願い致します。)


===機能===
===機能===
41行目: 46行目:
]]
]]
====脳の機能的構造維持====
====脳の機能的構造維持====
 前述のようにアストロサイトは沢山の突起を伸ばし、その先端をシート状にひろげ、まるでスポンジのような形をしている。脳の灰白質の中では一つのアストロサイトは突起の先端部分で他のアストロサイトとわずかに重なり合う程度である。一方、アストロサイトの一端は血管に接触している。したがって、アストロサイトと血管の間に一定の三次元空間が造り出される(図3)<ref><pubmed>14522144</pubmed></ref>。したがって、ニューロンのネットワークはアストロサイトが造り出す網目状の空間に配置されていることになる。実際にニューロンが造るシナプスをアストロサイトの先端突起部(ラメラ:lamella)が覆っており、互いに緊密な機能的相関があることを示している。
 前述のようにアストロサイトは沢山の突起を伸ばし、その先端をシート状にひろげ、まるでスポンジのような形をしている。脳の灰白質の中では一つのアストロサイトは突起の先端部分で他のアストロサイトとわずかに重なり合う程度である。一方、アストロサイトの一端は[[wj:血管|血管]]に接触している。したがって、アストロサイトと血管の間に一定の三次元空間が造り出される(図3)<ref><pubmed>14522144</pubmed></ref>。したがって、ニューロンのネットワークはアストロサイトが造り出す網目状の空間に配置されていることになる。実際にニューロンが作るシナプスをアストロサイトの先端突起部(ラメラ:lamella)が覆っており、互いに緊密な機能的相関があることを示している。


====細胞外イオン環境の調節====
====細胞外イオン環境の調節====
 シナプス周辺に高密度に広がるアストロサイトの先端突起はニューロン活動に伴う細胞外イオン環境の変化の恒常性に重要な役割を持つ。ニューロンの活動、すなわち脱分極はニューロン内にNa+とCa2+を流入させ、細胞外にK+を流出させる。細胞外のK+が上昇はニューロン内外のイオン勾配を小さくしてしまうので、活動電位の発生に支障を来す。アストロサイトには多様なイオンポンプやイオンチャンネル(K+チャンネル、Na+/H+アンチポーター、Na+/K+/Cl-トランスポーター、Cl-チャンネル、水チャンネルなど)が分布しており、ニューロン活動に伴って生ずる細胞外液のイオン濃度の変化を調節し、恒常性を保っている。
 シナプス周辺に高密度に広がるアストロサイトの先端突起はニューロン活動に伴う細胞外イオン環境の変化の恒常性に重要な役割を持つ。ニューロンの活動、すなわち脱分極はニューロン内にNa<sup>+</sup>と[[Ca<sup>2+</sup>]]を流入させ、細胞外にK<sup>+</sup>を流出させる。細胞外のK<sup>+</sup>が上昇はニューロン内外のイオン勾配を小さくしてしまうので、活動電位の発生に支障を来す。アストロサイトには多様なイオンポンプやイオンチャンネル(K<sup>+</sup>チャンネル、Na<sup>+</sup>/H<sup>+</sup>アンチポーター、Na<sup>+</sup>/K<sup>+</sup>/Cl<sup>+</sup>トランスポーター、Cl<sup>-</sup>チャンネル、水チャンネルなど)が分布しており、ニューロン活動に伴って生ずる細胞外液のイオン濃度の変化を調節し、恒常性を保っている。


====血液-脳関門====
====血液脳関門====
脳の細動脈はアストロサイトの先端で覆われており、血管上皮細胞は互いに緊密に繋ぎ合わされている。ニューロンは血管とは直接接触していないので、血液と脳実質間の物質の受け渡しは血管壁とアストロサイト膜を介して行わなければならない。実際にこのままでは小さなイオンさえも通すことはできない。必要な分子は血管上皮とアストロサイトに発現した次のような特殊なトランスポーを介して行われる。この仕組みが、脳内への有害物質の浸入を防ぎ、必要な分子を選択的に通過させる血液―脳関門である。
 脳の細動脈はアストロサイトの先端で覆われており、血管上皮細胞は互いに緊密に繋ぎ合わされている。ニューロンは血管とは直接接触していないので、血液と脳実質間の物質の受け渡しは血管壁とアストロサイト膜を介して行わなければならない。実際にこのままでは小さなイオンさえも通すことはできない。必要な分子は血管上皮とアストロサイトに発現した次のような特殊なトランスポーを介して行われる。
#グルコーストランスポーター(GLUT1)
#[[グルコーストランスポーター]](GLUT1)
#多様なアミノ酸トランスポーター
#多様な[[アミノ酸トランスポーター]]
#エネルギー依存性アデニンヌクレオチド結合(adenine-nucleotide binding casset(ABC)トランスポーター
#[[ABCトランスポーター|エネルギー依存性アデニンヌクレオチド結合(adenine-nucleotide binding casset(ABC)トランスポーター]]
#各種のイオン交換システム(Na+/H+,Na+/K+,Cl-/HCO3-)
#各種のイオン交換システム(Na<sup>+</sup>/H<sup>+</sup>、Na<sup>+</sup>/K<sup>+</sup>、Cl<sup>-</sup>/HCO<sub>3</sub><sup>-</sup>)
[[ファイル:Kudo Fig4.png|thumb|right|350px|'''図4 アストロサイトに発現する多様な神経伝達物質トランスポーター'''<br>Uptake2(モノアミントランスポーター)以外はすべてNa+を共輸送する。グリシントランスポーターとUptake1はCl-を共輸送する。特にグルタミン酸トランスポーターでは陽イオンの共輸送が大きくとりこみにより電位が発生する(起電性)。
 この仕組みが、脳内への有害物質の浸入を防ぎ、必要な分子を選択的に通過させる[[血液脳関門]]である。
]]
 
[[ファイル:Kudo Fig4.png|thumb|right|350px|'''図4 アストロサイトに発現する多様な神経伝達物質トランスポーター'''<br>Uptake2(モノアミントランスポーター)以外はすべてNa+を共輸送する。グリシントランスポーターとUptake1はCl-を共輸送する。特にグルタミン酸トランスポーターでは陽イオンの共輸送が大きくとりこみにより電位が発生する(起電性)。]]
====神経伝達物質の取り込み====
====神経伝達物質の取り込み====
神経信号の伝達の際にシナプス周辺には神経伝達物質が大量に放出される。信号伝達後、過剰な伝達物質は早急にシナプス部位から排除されることが必要である。アセチルコリンやATPは特殊な分解酵素によって速やかに排除される。しかし、中枢神経系の約70%シナプスにおいて興奮性神経伝達物質して機能しているグルタミン酸をはじめとして、多くの伝達物質は特殊なトランスポーターによってシナプス周辺から除去される(図4)。グルタミン酸の取り込みには興奮性アミノ酸トランスポーター(Excitatory amino acid transporter: EAAT)が使われる。ニューロンにも存在するが、アストロサイトに発現するEAAT1(GLAST: Glutamate aspartate transporter)とEAAT2(GLT-1: Glutamate transporter-1)が主なグルタミン酸取り込み経路となっている。これらのトランスポーターは細胞内外のイオン濃度勾配を利用してグルタミン酸を輸送する。図4に示すように、グルタミン酸一分子の取り込みには2 - 3個のNaイオンと1個のHイオンが共輸送され、1個のKイオンが排出される。結果として、この取り込みの際にはアストロサイトは脱分極する(起電性トランスポーター:electrogenic transporter)<ref><pubmed>21752877</pubmed></ref>。
 神経信号の伝達の際にシナプス周辺には[[神経伝達物質]]が大量に放出される。信号伝達後、過剰な伝達物質は早急にシナプス部位から排除されることが必要である。[[アセチルコリン]]や[[ATP]]は特殊な分解酵素によって速やかに排除される。しかし、中枢神経系の約70%シナプスにおいて興奮性神経伝達物質して機能している[[グルタミン酸]]をはじめとして、多くの伝達物質は特殊な[[トランスポーター]]によってシナプス周辺から除去される(図4)。グルタミン酸の取り込みには[[興奮性アミノ酸トランスポーター]](Excitatory amino acid transporter: EAAT)が使われる。ニューロンにも存在するが、アストロサイトに発現する[[EAAT1]]([[Glutamate aspartate transporter]]、[[GLAST]])とEAAT2(GLT-1: Glutamate transporter-1)が主なグルタミン酸取り込み経路となっている。これらのトランスポーターは細胞内外のイオン濃度勾配を利用してグルタミン酸を輸送する。図4に示すように、グルタミン酸一分子の取り込みには2 - 3個のNaイオンと1個のHイオンが共輸送され、1個のKイオンが排出される。結果として、この取り込みの際にはアストロサイトは脱分極する(起電性トランスポーター:electrogenic transporter)<ref><pubmed>21752877</pubmed></ref>。
 アストロサイトには抑制性伝達物質GABAおよびグリシンに対するトランスポーターも発現する。前者はGAT-3と呼ばれ、一分子のGABAの取り込みに2個のNaイオンの共輸送を必要とする。後者はGLYT-1と呼ばれ、一分子のグリシンの取り込みに2個のNaイオンと1個のClイオン の共輸送が必要とされる<ref><pubmed>24273530</pubmed></ref>。その他、アストロサイトにはタウリントランスポーターも発現している。
 アストロサイトには抑制性伝達物質GABAおよびグリシンに対するトランスポーターも発現する。前者はGAT-3と呼ばれ、一分子のGABAの取り込みに2個のNaイオンの共輸送を必要とする。後者はGLYT-1と呼ばれ、一分子のグリシンの取り込みに2個のNaイオンと1個のClイオン の共輸送が必要とされる<ref><pubmed>24273530</pubmed></ref>。その他、アストロサイトにはタウリントランスポーターも発現している。
 さらに中枢におけるuptake1と呼ばれるNaイオン依存性およびコカイン感受性の神経型モノアミントランスポーターに加えて、uptake2と呼ばれるNaイオンに依存しないステロイド感受性のモノアミントランスポーターが存在することが明らかにされている。アストロサイトにはuptake1もuptake2も存在し、モノアミン除去に重要な役割を果たしている。モノアミントランスポーターとして、ドーパミントランスポーター(DAT)、ノルエピネフリントランスポーター(NET)およびセロトニントランスポーター(SET)のcDNAがクローニングされている。その他、アストロサイトにはヒスタミントランスポーターの存在も同定されている<ref><pubmed>13677912</pubmed></ref>、<ref>'''A Verkhratsky, A Butt'''<br>Glial Neurobiology A Textbook<br>''Wiley(England)''2007</ref>。  
 さらに中枢におけるuptake1と呼ばれるNaイオン依存性およびコカイン感受性の神経型モノアミントランスポーターに加えて、uptake2と呼ばれるNaイオンに依存しないステロイド感受性のモノアミントランスポーターが存在することが明らかにされている。アストロサイトにはuptake1もuptake2も存在し、モノアミン除去に重要な役割を果たしている。モノアミントランスポーターとして、ドーパミントランスポーター(DAT)、ノルエピネフリントランスポーター(NET)およびセロトニントランスポーター(SET)のcDNAがクローニングされている。その他、アストロサイトにはヒスタミントランスポーターの存在も同定されている<ref><pubmed>13677912</pubmed></ref>、<ref>'''A Verkhratsky, A Butt'''<br>Glial Neurobiology A Textbook<br>''Wiley(England)''2007</ref>。