16,040
回編集
細 (→α–カテニン) |
細 (→β–カテニン、プラコグロビン) |
||
128行目: | 128行目: | ||
===構造=== | ===構造=== | ||
β | β–カテニンの一次構造についてはショウジョウバエのアルマジロで見つかった42アミノ酸残基の繰り返し配列(アルマジロ反復配列)が分子のN末端とC末端以外の大部分を占める。β–カテニンタンパク質の全長の立体構造が得られている<ref name=ref15><pubmed> 18334222 </pubmed></ref>。この反復配列のほぼその全体にカドヘリンの細胞質領域の細胞膜より遠い部分が結合する。 | ||
E–カドヘリンは、細胞質領域の細胞膜より遠い部分を介して、β–カテニンのアルマジロ配列のほぼ全体に結合する<ref name=ref16><pubmed> 15112230 </pubmed></ref>。α–カテニンとは、そのアルマジロ反復配列のもっともN末よりの部分で結合する<ref name=ref16><pubmed> 15112230 </pubmed></ref>。他にも、アルマジロ反復配列領域では、[[転写因子]]である[[TCF]]/[[LEF]]に結合することで、[[WNT|Wnt]]シグナル伝達における転写制御に、また、[[APC]]、[[Axin]]もその反復配列へ結合することで、β–カテニンの分解に関与している。また、アルマジロ反復配列よりもN末側の領域と[[GSK3β]]との結合も存在し、β–カテニンの分解促進に重要であると考えられている。 | E–カドヘリンは、細胞質領域の細胞膜より遠い部分を介して、β–カテニンのアルマジロ配列のほぼ全体に結合する<ref name=ref16><pubmed> 15112230 </pubmed></ref>。α–カテニンとは、そのアルマジロ反復配列のもっともN末よりの部分で結合する<ref name=ref16><pubmed> 15112230 </pubmed></ref>。他にも、アルマジロ反復配列領域では、[[転写因子]]である[[TCF]]/[[LEF]]に結合することで、[[WNT|Wnt]]シグナル伝達における転写制御に、また、[[APC]]、[[Axin]]もその反復配列へ結合することで、β–カテニンの分解に関与している。また、アルマジロ反復配列よりもN末側の領域と[[GSK3β]]との結合も存在し、β–カテニンの分解促進に重要であると考えられている。 | ||
146行目: | 146行目: | ||
F9細胞ではβ–カテニンをノックアウトしてもプラコグロビンの発現が増加し、カドヘリンによる接着能は維持されるが、プラコグロビンもあわせてノックアウトするとその接着能は失われることが示されている<ref name=ref18><pubmed> 16357441 </pubmed></ref>。しかし、カドヘリンが発現していない細胞に、カドヘリンとα–カテニンとを融合したタンパク質を発現させれば、β–カテニンが存在しなくてもカドヘリンの機能は発揮される<ref name=ref19><pubmed> 7929566 </pubmed></ref>。これらは、細胞間接着においてプラコグロビンがβ–カテニンの機能を補完する役割を担っており、またβ–カテニンの機能は、α–カテニンをカドヘリンに結合させることであることを示している。 | F9細胞ではβ–カテニンをノックアウトしてもプラコグロビンの発現が増加し、カドヘリンによる接着能は維持されるが、プラコグロビンもあわせてノックアウトするとその接着能は失われることが示されている<ref name=ref18><pubmed> 16357441 </pubmed></ref>。しかし、カドヘリンが発現していない細胞に、カドヘリンとα–カテニンとを融合したタンパク質を発現させれば、β–カテニンが存在しなくてもカドヘリンの機能は発揮される<ref name=ref19><pubmed> 7929566 </pubmed></ref>。これらは、細胞間接着においてプラコグロビンがβ–カテニンの機能を補完する役割を担っており、またβ–カテニンの機能は、α–カテニンをカドヘリンに結合させることであることを示している。 | ||
細胞接着においてプラコグロビンはデスモソ-ムカドヘリンと細胞骨格の一つである中間径フィラメントの結合タンパク質である[[プラモプラーキン]] | 細胞接着においてプラコグロビンはデスモソ-ムカドヘリンと細胞骨格の一つである中間径フィラメントの結合タンパク質である[[プラモプラーキン]]の両方と同時に結合し、デスモソームの構造体として機能する。プラコグロビンのC末端領域の欠損した培養細胞では、細胞のラテラル面(極性をもつ細胞の頂端と基底部分の間に位置し、隣り合う細胞膜(ラテラル膜)がなす面)でのデスモソームの融合が見られ、結果としてデスモソームのサイズの増大が起こる。また、プラコグロビンは、接着結合とデスモソーム間の分子のクロストークの制御に寄与していることが示唆されている。プラコグロビンの[[ノックアウトマウス]]の[[wikipedia:ja:心筋|心筋]]組織では接着結合の構成因子とデスモソームの構成因子とが混在した状態でラテラル面に局在するようになってしまう<ref name=ref20><pubmed> 19262118 </pubmed></ref>。 | ||
====転写制御==== | ====転写制御==== | ||
β–カテニンは、発生における遺伝子発現の制御にも重要な役割がある。Wntシグナルがない状態では、細胞質のβ–カテニン(カドヘリン・カテニン複合体中のものとは別である)はGSK3βによりリン酸化され、それを標的とした[[ユビキチン化]]により、[[プロテアソーム]]によるタンパク質分解をうけることで、その量が低く保たれている。WntシグナルがやってくればGSK3βによる[[リン酸化]]が抑制され、β–カテニンは核内へ移行し、TCF/LEFと複合体を形成し、[[細胞周期]]関連因子や[[体軸]]決定因子などの標的遺伝子を活性化する<ref name=ref4><pubmed> 22617422 </pubmed></ref>。これは、[[wikipedia:ja:ウニ|ウニ]]の発生を初めとし[[wikipedia:ja:無脊椎動物|無脊椎動物]]、[[wikipedia:ja:脊椎動物|脊椎動物]]両方において報告されている<ref name=ref4><pubmed> 22617422 </pubmed></ref>。 | β–カテニンは、発生における遺伝子発現の制御にも重要な役割がある。Wntシグナルがない状態では、細胞質のβ–カテニン(カドヘリン・カテニン複合体中のものとは別である)はGSK3βによりリン酸化され、それを標的とした[[ユビキチン化]]により、[[プロテアソーム]]によるタンパク質分解をうけることで、その量が低く保たれている。WntシグナルがやってくればGSK3βによる[[リン酸化]]が抑制され、β–カテニンは核内へ移行し、TCF/LEFと複合体を形成し、[[細胞周期]]関連因子や[[体軸]]決定因子などの標的遺伝子を活性化する<ref name=ref4><pubmed> 22617422 </pubmed></ref>。これは、[[wikipedia:ja:ウニ|ウニ]]の発生を初めとし[[wikipedia:ja:無脊椎動物|無脊椎動物]]、[[wikipedia:ja:脊椎動物|脊椎動物]]両方において報告されている<ref name=ref4><pubmed> 22617422 </pubmed></ref>。 | ||
神経系においても、[[シナプス形成]]と[[可塑性]]や[[神経幹細胞]]の未分化状態の維持など多岐にわたる寄与が報告されている<ref>'''Elkouby, Y. M., Frank, D. '''<br>Wnt/β-Catenin Signaling in Vertebrate Posterior Neural Development<br>''Developmental Biology (San Rafael | 神経系においても、[[シナプス形成]]と[[可塑性]]や[[神経幹細胞]]の未分化状態の維持など多岐にわたる寄与が報告されている<ref>'''Elkouby, Y. M., Frank, D. '''<br>Wnt/β-Catenin Signaling in Vertebrate Posterior Neural Development<br>''Developmental Biology (San Rafael, CA))'':2010</ref><ref name=ref21><pubmed> 23377854 </pubmed></ref>。また、プラコグロビンも先に挙げたTCF/LEFと結合でき、核内への局在がみられる状況では、Wnt/β–カテニンシグナル伝達の抑制が同時にみられていることから、実際にはプラコグロビンはβ–カテニンと相互排他的にTCF/LEFへ結合しうり、その結果としてWnt/β–カテニンシグナル伝達の制御を実現していると解釈できる。 | ||
==p120–カテニン== | ==p120–カテニン== |