「カテニン」の版間の差分

156行目: 156行目:


===構造===
===構造===
 p120–カテニンファミリータンパク質の中央領域に見られる10個のアルマジロ反復配列は、カドヘリンの細胞膜に近接した細胞質領域と結合する<ref name=ref22><pubmed> 15489912 </pubmed></ref>。p120–カテニンのアルマジロ反復配列に隣接するN末端側の領域は、[[スレオニン]]残基のリン酸化サイトが複数存在している。そのさらに隣に位置するN末端には[[コイルドコイル]]配列が存在している。加えて、&delta;–カテニンは、そのC末端に[[PDZドメインタンパク質]]との結合領域を有す。その一例として、[[グルタミン酸受容体結合タンパク質]] ([[glutamate receptor interacting protein]]; [[GRIP]])やシナプス後膜直下に形成される[[シナプス後部肥厚]]([[postsynaptic density]]: [[PSD]])に局在化する[[PSD-95]]などがそこに結合する<ref name=ref14><pubmed> 22535893 </pubmed></ref>。
 p120–カテニンファミリータンパク質の中央領域に見られる10個のアルマジロ反復配列は、カドヘリンの細胞膜に近接した細胞質領域と結合する<ref name=ref22><pubmed> 15489912 </pubmed></ref>。p120–カテニンのアルマジロ反復配列に隣接するN末端側の領域は、[[スレオニン]]残基のリン酸化サイトが複数存在している。そのさらに隣に位置するN末端には[[コイルドコイル]]配列が存在している。加えて、&delta;–カテニンは、そのC末端に[[PDZドメインタンパク質]]との結合領域を有す。その一例として、[[グルタミン酸受容体結合タンパク質]] ([[glutamate receptor interacting protein]]; [[GRIP]])やシナプス後膜直下に形成される[[シナプス後肥厚]]([[postsynaptic density]]: [[PSD]])に局在化する[[PSD-95]]などがそこに結合する<ref name=ref14><pubmed> 22535893 </pubmed></ref>。


===発現===
===発現===
163行目: 163行目:
===機能===
===機能===
====細胞膜上カドヘリン量の維持====
====細胞膜上カドヘリン量の維持====
 p120–カテニンは、カドヘリンとの結合を介してカドヘリンの[[エンドサイトーシス]]を 抑制し、細胞膜上のカドヘリン量を維持する。p120–カテニンの[[チロシンリン酸化]]はp120–カテニンのカドヘリンとの結合解除に寄与する。このカドヘリンのp120–カテニン結合領域内には、そのエンドサイトーシスシグナルが存在し、カドヘリンにp120–カテニンが結合することによって、そのシグナルがマスクされ、その結果としてカドヘリンは細胞内に取り込まれないようになっているという機構が近年示されている<ref name=ref23><pubmed> 20371349 </pubmed></ref> <ref name=ref24><pubmed> 23071156 </pubmed></ref>。カドヘリンの接着活性がない[[wikipedia:ja:大腸癌|大腸癌]]由来の[[細胞株]]を用いた解析からは、p120–カテニンはカドヘリンと結合することで接着活性を抑制する結合因子であることが示された<ref name=ref25><pubmed> 10225956 </pubmed></ref>。カドヘリンの発現量の低下は[[wikipedia:ja:悪性腫瘍|悪性腫瘍]]組織でみられる特徴の一つであるが<ref name=ref25><pubmed> 10647931 </pubmed></ref>、そのような腫瘍組織のいくつかの種類では、p120–カテニンが細胞膜に局在できないことによってカドヘリンのエンドサイトーシスが亢進されると解釈される<ref name=ref26><pubmed> 12492499 </pubmed></ref>。
 p120–カテニンは、カドヘリンとの結合を介してカドヘリンの[[エンドサイトーシス]]を 抑制し、細胞膜上のカドヘリン量を維持する。p120–カテニンの[[チロシンリン酸化]]はp120–カテニンのカドヘリンとの結合解除に寄与する。このカドヘリンのp120–カテニン結合領域内には、そのエンドサイトーシスシグナルが存在し、カドヘリンにp120–カテニンが結合することによって、そのシグナルがマスクされ、その結果としてカドヘリンは細胞内に取り込まれない<ref name=ref23><pubmed> 20371349 </pubmed></ref> <ref name=ref24><pubmed> 23071156 </pubmed></ref>。カドヘリンの接着活性がない[[wikipedia:ja:大腸癌|大腸癌]]由来の[[細胞株]]を用いた解析からは、p120–カテニンはカドヘリンと結合することで接着活性を抑制する結合因子であることが示された<ref name=ref25><pubmed> 10225956 </pubmed></ref>。カドヘリンの発現量の低下は[[wikipedia:ja:悪性腫瘍|悪性腫瘍]]組織でみられる特徴の一つであるが<ref name=ref25><pubmed> 10647931 </pubmed></ref>、そのような腫瘍組織のいくつかの種類では、p120–カテニンが細胞膜に局在できないことによってカドヘリンのエンドサイトーシスが亢進されると解釈される<ref name=ref26><pubmed> 12492499 </pubmed></ref>。


====細胞膜直下アクチン線維動態の制御====
====細胞膜直下アクチン線維動態の制御====
 また、p120–カテニンは細胞膜直下のアクチン線維動態も制御している。p120–カテニンはアクチン細胞骨格動態の主要な制御因子である[[低分子量Gタンパク質]][[RhoA]]と結合し、RhoAの活性化を抑制し、一方で[[糸状仮足]]や[[葉状仮足]]の発達につながる膜直下のアクチン細胞骨格の再編成に必要な他の低分子量Gタンパク質[[Rac]]や[[Cdc42]]を活性化することで、細胞接着形成の初期段階においてアクチン細胞骨格の再編成を促進すると考えられている<ref name=ref27><pubmed>17194753</pubmed></ref>。細胞質におけるRhoAとの結合はp120–カテニンのリン酸化に依存している<ref name=ref27><pubmed>17194753</pubmed></ref>が、先に述べたように、p120–カテニンのリン酸化の増加がカドヘリンの接着活性の低下に働くことを考えあわせると、p120–カテニンのリン酸化の制御は細胞接着と細胞運動の適切な均衡をとるという機構の一つになると考えられる。[[ラット]]海馬由来の培養神経細胞においても、上述したp120–カテニンのRhoA、Rac、そしてCdc42の活性制御を介してアクチン細胞骨格動態を活性化させ、神経樹状突起伸長の促進やシナプス可塑性の適切な制御に寄与している<ref name=ref28><pubmed> 17936606 </pubmed></ref>。
 また、p120–カテニンは細胞膜直下の[[アクチン]]線維動態も制御している。p120–カテニンはアクチン細胞骨格動態の主要な制御因子である[[低分子量Gタンパク質]][[RhoA]]と結合し、RhoAの活性化を抑制し、一方で[[糸状仮足]]や[[葉状仮足]]の発達につながる膜直下のアクチン細胞骨格の再編成に必要な他の低分子量Gタンパク質[[Rac]]や[[Cdc42]]を活性化することで、細胞接着形成の初期段階においてアクチン細胞骨格の再編成を促進すると考えられている<ref name=ref27><pubmed>17194753</pubmed></ref>。細胞質におけるRhoAとの結合はp120–カテニンのリン酸化に依存している<ref name=ref27><pubmed>17194753</pubmed></ref>が、先に述べたように、p120–カテニンのリン酸化の増加がカドヘリンの接着活性の低下に働くことを考えあわせると、p120–カテニンのリン酸化の制御は細胞接着と細胞運動の適切な均衡をとるという機構の一つになると考えられる。[[ラット]]海馬由来の培養神経細胞においても、上述したp120–カテニンのRhoA、Rac、そしてCdc42の活性制御を介してアクチン細胞骨格動態を活性化させ、神経樹状突起伸長の促進やシナプス可塑性の適切な制御に寄与している<ref name=ref28><pubmed> 17936606 </pubmed></ref>。


====接着結合と微小管との架橋====
====接着結合と微小管との架橋====
175行目: 175行目:


====シナプスでの機能====
====シナプスでの機能====
 [[マウス]]の脳組織における免疫沈降実験から、&delta;–カテニンはN–カドヘリンと&beta;–カテニンと結合することが確認され、樹状突起のシナプスに強く観察される。シナプスにおいてカドヘリン・カテニン複合体の一員として機能することが予想される<ref name=ref32><pubmed> 9971746 </pubmed></ref>。
 [[マウス]]の脳組織における[[免疫沈降]]実験から、&delta;–カテニンはN–カドヘリンと&beta;–カテニンと結合することが確認され、樹状突起のシナプスに強く観察される。シナプスにおいてカドヘリン・カテニン複合体の一員として機能することが予想される<ref name=ref32><pubmed> 9971746 </pubmed></ref>。


  [[ラット]]神経組織の初代培養細胞では、&delta;–カテニンはGSK3&beta;、&beta;–カテニンと複合体を形成し、&beta;–カテニンの分解を促進させる機能も有する<ref name=ref33><pubmed> 20623542 </pubmed></ref>。  
  [[ラット]]神経組織の初代培養細胞では、&delta;–カテニンはGSK3&beta;、&beta;–カテニンと複合体を形成し、&beta;–カテニンの分解を促進させる機能も有する<ref name=ref33><pubmed> 20623542 </pubmed></ref>。  


 シナプス後細胞では、[[グルタミン酸受容体結合タンパク質]][[GRIP]]やシナプスシナプス後部肥厚部分に局在化する[[PDS-95]]との結合が報告されているが、成熟したシナプスにおいてのみ&delta;–カテニンはそれらと局在化する。一方で、シナプスの形成初期では、&delta;–カテニンの代わりにp120–カテニンがシナプス構造部分に局在する。このようにシナプスの形成過程の中で時期特異的に異なるカテニンが働いて、シグナル伝達の制御をしうる成熟したシナプスが構築されると考えられる<ref name=ref34><pubmed> 15752981 </pubmed></ref>。
 シナプス後細胞では、[[グルタミン酸受容体結合タンパク質]][[GRIP]]やシナプス後肥厚部分に局在化する[[PDS-95]]との結合が報告されているが、成熟したシナプスにおいてのみ&delta;–カテニンはそれらと局在化する。一方で、シナプスの形成初期では、&delta;–カテニンの代わりにp120–カテニンがシナプス構造部分に局在する。このようにシナプスの形成過程の中で時期特異的に異なるカテニンが働いて、シグナル伝達の制御をしうる成熟したシナプスが構築されると考えられる<ref name=ref34><pubmed> 15752981 </pubmed></ref>。


==脳におけるカテニンの機能==
==脳におけるカテニンの機能==