「ロドプシン」の版間の差分

編集の要約なし
4行目: 4行目:


== ロドプシン分子 ==
== ロドプシン分子 ==
=== ロドプシンとは ===
 [[wikipedia:JA:脊椎動物|脊椎動物]]の眼には2種類の[[視細胞]]、[[桿体]]と[[錐体]]が存在し、それぞれ、[[暗所視]]、[[明所視]]を司る。両視細胞には光を受容するために特別に分化したタンパク質(光受容タンパク質)が含まれ、それらを視物質と呼ぶ<ref>'''Dowling J'''<br>The Retina: An approachable part of the brain<br>''The Belknap Press of Harvard Univ. Press'':1987</ref><ref name><pubmed> 9893707 </pubmed></ref>。桿体に含まれる視物質(桿体視物質)をロドプシンと呼び、ロドプシンは視物質の代表として多くの研究に利用されている。錐体には複数のサブタイプがあり、それぞれに波長感受性の異なる錐体視物質が含まれている。ヒトの錐体には、赤、緑、青に感受性の高い3種類の錐体視物質がそれぞれ含まれている。そして、これら錐体の応答が統合されることにより、色覚が生じる<ref><pubmed> 1385866 </pubmed></ref>。 視細胞には[[wikipedia:JA:繊毛|繊毛]]が分化した[[外節]]と呼ばれる特別の部位がある。桿体の外節にはパンケーキ状の円盤膜(disk membrane)が何層にも重なっている。そして、ロドプシンはこの円盤膜に埋め込まれて存在している。錐体の外節はひだ状の層構造になっており、この構造の中に錐体視物質が埋め込まれている(図1参照)。 微弱光でも効率よく受容できるように、ロドプシンは桿体の円盤膜に大量に発現している(円盤膜面積の50%以上がロドプシン分子である)。光を受容したロドプシンは構造変化を起こし、[[Gタンパク質]]を介して[[細胞内シグナル伝達系]]を駆動する。この際にロドプシンの1分子は数百のGタンパク質を活性化し、光情報が増幅される。シグナル伝達系の下流でもさらに増幅機構が働き、その結果として、桿体はわずか1個の光子を受容しただけで応答することができる。円盤膜は定常的にリニューアルされている。外節の根元から新しい円盤膜が作られ、先端の円盤膜は[[網膜色素上皮細胞]]に取り込まれる。[[マウス]]ではおよそ10日で円盤膜が根元から網膜色素上皮細胞層に達する。  
 [[wikipedia:JA:脊椎動物|脊椎動物]]の眼には2種類の[[視細胞]]、[[桿体]]と[[錐体]]が存在し、それぞれ、[[暗所視]]、[[明所視]]を司る。両視細胞には光を受容するために特別に分化したタンパク質(光受容タンパク質)が含まれ、それらを視物質と呼ぶ<ref>'''Dowling J'''<br>The Retina: An approachable part of the brain<br>''The Belknap Press of Harvard Univ. Press'':1987</ref><ref name><pubmed> 9893707 </pubmed></ref>。桿体に含まれる視物質(桿体視物質)をロドプシンと呼び、ロドプシンは視物質の代表として多くの研究に利用されている。錐体には複数のサブタイプがあり、それぞれに波長感受性の異なる錐体視物質が含まれている。ヒトの錐体には、赤、緑、青に感受性の高い3種類の錐体視物質がそれぞれ含まれている。そして、これら錐体の応答が統合されることにより、色覚が生じる<ref><pubmed> 1385866 </pubmed></ref>。 視細胞には[[wikipedia:JA:繊毛|繊毛]]が分化した[[外節]]と呼ばれる特別の部位がある。桿体の外節にはパンケーキ状の円盤膜(disk membrane)が何層にも重なっている。そして、ロドプシンはこの円盤膜に埋め込まれて存在している。錐体の外節はひだ状の層構造になっており、この構造の中に錐体視物質が埋め込まれている(図1参照)。 微弱光でも効率よく受容できるように、ロドプシンは桿体の円盤膜に大量に発現している(円盤膜面積の50%以上がロドプシン分子である)。光を受容したロドプシンは構造変化を起こし、[[Gタンパク質]]を介して[[細胞内シグナル伝達系]]を駆動する。この際にロドプシンの1分子は数百のGタンパク質を活性化し、光情報が増幅される。シグナル伝達系の下流でもさらに増幅機構が働き、その結果として、桿体はわずか1個の光子を受容しただけで応答することができる。円盤膜は定常的にリニューアルされている。外節の根元から新しい円盤膜が作られ、先端の円盤膜は[[網膜色素上皮細胞]]に取り込まれる。[[マウス]]ではおよそ10日で円盤膜が根元から網膜色素上皮細胞層に達する。  


13行目: 12行目:
[[Image:Mammal eye.png|thumb|right|300px|'''図1:ほ乳類の眼'''<br />眼に入った光は、角膜、レンズ、ガラス体を通過し、光受容に特化した視細胞に受容される。網膜中の視細胞は光が入射する方向と反対側にあり、そのため、光は視細胞に達するまでに神経節細胞や双極細胞などが含まれる神経層を通過することになる。 脊椎動物の眼には形態的に異なる2種類の視細胞、桿体(Rod)と錐体(Cone)があり、それぞれ、暗所、明所での視覚を分担している。そのため、それぞれ異なる応答特性を持っている。 桿体は感度が高いが応答が遅く、錐体は桿体よりも感度は低いが応答が速い。 また、錐体には複数のサブタイプがあり、それぞれ、赤、緑、青の光を吸収しやすい視物質が含まれており、色識別を可能にしている。桿体にはロドプシンが大量に含まれる円盤膜がパンケーキ状に重なっている。暗所での光受容に特化した桿体は単一光子を検出するほどの感度を有している。]]
[[Image:Mammal eye.png|thumb|right|300px|'''図1:ほ乳類の眼'''<br />眼に入った光は、角膜、レンズ、ガラス体を通過し、光受容に特化した視細胞に受容される。網膜中の視細胞は光が入射する方向と反対側にあり、そのため、光は視細胞に達するまでに神経節細胞や双極細胞などが含まれる神経層を通過することになる。 脊椎動物の眼には形態的に異なる2種類の視細胞、桿体(Rod)と錐体(Cone)があり、それぞれ、暗所、明所での視覚を分担している。そのため、それぞれ異なる応答特性を持っている。 桿体は感度が高いが応答が遅く、錐体は桿体よりも感度は低いが応答が速い。 また、錐体には複数のサブタイプがあり、それぞれ、赤、緑、青の光を吸収しやすい視物質が含まれており、色識別を可能にしている。桿体にはロドプシンが大量に含まれる円盤膜がパンケーキ状に重なっている。暗所での光受容に特化した桿体は単一光子を検出するほどの感度を有している。]]


===基本構造 ===
==基本構造 ==


==== 発色団レチナール ====
=== 発色団レチナール ===


 ロドプシンの大きな特徴の一つは光を受容する[[wikipedia:JA:発色団|発色団]]として[[wikipedia:JA:レチナール|レチナール]]を含むことである。つまり、ロドプシンはアポタンパク質と発色団レチナールからなる。[[wikipedia:JA:アポタンパク質|アポタンパク質]]のことをオプシン(opsin)と呼ぶ(桿体視物質と錐体視物質のオプシンを区別する場合、scotopsin、photopsinと呼ぶ場合がある)。「オプシン」や「ロドプシン」という言葉は、広義には、ロドプシンに相同なタンパク質という意味でも使われている。  
 ロドプシンの大きな特徴の一つは光を受容する[[wikipedia:JA:発色団|発色団]]として[[wikipedia:JA:レチナール|レチナール]]を含むことである。つまり、ロドプシンはアポタンパク質と発色団レチナールからなる。[[wikipedia:JA:アポタンパク質|アポタンパク質]]のことをオプシン(opsin)と呼ぶ(桿体視物質と錐体視物質のオプシンを区別する場合、scotopsin、photopsinと呼ぶ場合がある)。「オプシン」や「ロドプシン」という言葉は、広義には、ロドプシンに相同なタンパク質という意味でも使われている。  
23行目: 22行目:
 [[wikipedia:JA:11-シスレチナール|11-シスレチナール]]はロドプシンが光を受容するために必須の分子である。また、11-シスレチナールがオプシンと結合すると(ロドプシンになると)、オプシンの暗状態でのGタンパク質活性化能が強く抑制される。一方、光を受容して全トランス型に異性化すると、ロドプシンを高効率でGタンパク質を活性化する状態にする。つまり、薬理学的には、11-シスレチナールはinverse agonist(活性を抑制するリガンド、[[逆作動]]薬)、全トランス型レチナールはagonist( 活性を促進するリガンド、[[作動薬]])と考えることができる。
 [[wikipedia:JA:11-シスレチナール|11-シスレチナール]]はロドプシンが光を受容するために必須の分子である。また、11-シスレチナールがオプシンと結合すると(ロドプシンになると)、オプシンの暗状態でのGタンパク質活性化能が強く抑制される。一方、光を受容して全トランス型に異性化すると、ロドプシンを高効率でGタンパク質を活性化する状態にする。つまり、薬理学的には、11-シスレチナールはinverse agonist(活性を抑制するリガンド、[[逆作動]]薬)、全トランス型レチナールはagonist( 活性を促進するリガンド、[[作動薬]])と考えることができる。


==== 7回膜貫通構造  ====
=== 7回膜貫通構造  ===
 ロドプシンのタンパク質部分(オプシン)は膜を貫通する7本の[[wikipedia:JA:α-ヘリックス|α-ヘリックス]]構造を持つ単一ペプチドである。これらα-ヘリックスは、その間にある細胞質ループ(Cytoplasmic/Intracellular loop: CL/IL)と細胞外ループ(Extracellular loop: EL)でつながれている。N末端が円盤膜の内側(トポロジー的には細胞外)に位置し、C末端が[[wikipedia:JA:細胞質|細胞質]]側にある。ヘリックス領域は膜を貫通するため、レチナールや[[wikipedia:JA:構造水|構造水]]と相互作用する少数の[[wikipedia:JA:親水性|親水性]]残基をのぞいて、ほとんどが疎水性残基で構成されている。一方、それ以外の領域には親水性残基が多く見られる。  
 ロドプシンのタンパク質部分(オプシン)は膜を貫通する7本の[[wikipedia:JA:α-ヘリックス|α-ヘリックス]]構造を持つ単一ペプチドである。これらα-ヘリックスは、その間にある細胞質ループ(Cytoplasmic/Intracellular loop: CL/IL)と細胞外ループ(Extracellular loop: EL)でつながれている。N末端が円盤膜の内側(トポロジー的には細胞外)に位置し、C末端が[[wikipedia:JA:細胞質|細胞質]]側にある。ヘリックス領域は膜を貫通するため、レチナールや[[wikipedia:JA:構造水|構造水]]と相互作用する少数の[[wikipedia:JA:親水性|親水性]]残基をのぞいて、ほとんどが疎水性残基で構成されている。一方、それ以外の領域には親水性残基が多く見られる。  


 ヘリックス領域はフレキシブルなループ領域とは異なり、[[wikipedia:JA:剛体運動|剛体運動]](rigid body motion)によってヘッリクス間の配置が変わるような構造変化を起こす<ref><pubmed> 8864113 </pubmed></ref>。この変化により、ロドプシンの活性状態が生成することが知られている。また、細胞質側の第2、第3ループ(CL2, 3)はGタンパク質と結合するサイトとして重要である。  
 ヘリックス領域はフレキシブルなループ領域とは異なり、[[wikipedia:JA:剛体運動|剛体運動]](rigid body motion)によってヘッリクス間の配置が変わるような構造変化を起こす<ref><pubmed> 8864113 </pubmed></ref>。この変化により、ロドプシンの活性状態が生成することが知られている。また、細胞質側の第2、第3ループ(CL2, 3)はGタンパク質と結合するサイトとして重要である。  


==== ヘリックス8 ====
=== ヘリックス8 ===
 ロドプシンにはヘリックス7とC末端の間に[[wikipedia:JA:翻訳後修飾|翻訳後修飾]]([[パルミチル化]])を受ける[[wikipedia:JA:システイン|システイン]]残基が存在し、結合したパルミチン酸は[[wikipedia:JA:脂質二重膜|脂質二重膜]]に挿入されると考えられている。そのため、ヘリックス7とシステイン残基との間が細胞質側のもう一つのループとなり、この領域はさらにヘリックス構造を形成している。このヘリックスはヘリックス8と呼ばれている。膜表面に存在するH8は[[wikipedia:JA:両親媒性|両親媒性]]のヘリックスで膜側に疎水性の残基を含んでいる(図2参照)。  
 ロドプシンにはヘリックス7とC末端の間に[[wikipedia:JA:翻訳後修飾|翻訳後修飾]]([[パルミチル化]])を受ける[[wikipedia:JA:システイン|システイン]]残基が存在し、結合したパルミチン酸は[[wikipedia:JA:脂質二重膜|脂質二重膜]]に挿入されると考えられている。そのため、ヘリックス7とシステイン残基との間が細胞質側のもう一つのループとなり、この領域はさらにヘリックス構造を形成している。このヘリックスはヘリックス8と呼ばれている。膜表面に存在するH8は[[wikipedia:JA:両親媒性|両親媒性]]のヘリックスで膜側に疎水性の残基を含んでいる(図2参照)。  


=== 翻訳後修飾 ===
== 翻訳後修飾 ==
 視細胞の[[wikipedia:JA:ER|ER]]で生合成されたオプシンは外節につながる繊毛部分に輸送され、外節の根元から生成する新たな円盤膜に取り込まれていく。前述したように、光受容体であるロドプシンは翻訳後にレチナールを取り込む必要があるが、それ以外にも円盤膜に運ばれるまでにいくつかの翻訳後修飾を受ける。ロドプシンの大きな特徴の一つがC110とC187の間に形成される[[wikipedia:JA:S−S結合|S−S結合]]である(図2参照)。このジスフィルド結合は多くの[[GPCR]]でも保存されておりECL2とH3を架橋することによって構造安定化に寄与している。  
 視細胞の[[wikipedia:JA:ER|ER]]で生合成されたオプシンは外節につながる繊毛部分に輸送され、外節の根元から生成する新たな円盤膜に取り込まれていく。前述したように、光受容体であるロドプシンは翻訳後にレチナールを取り込む必要があるが、それ以外にも円盤膜に運ばれるまでにいくつかの翻訳後修飾を受ける。ロドプシンの大きな特徴の一つがC110とC187の間に形成される[[wikipedia:JA:S−S結合|S−S結合]]である(図2参照)。このジスフィルド結合は多くの[[GPCR]]でも保存されておりECL2とH3を架橋することによって構造安定化に寄与している。  


38行目: 37行目:
[[Image:Rhodopsin structure.png|thumb|right|300px|'''図2:ロドプシンの立体構造モデル'''<br />a:基底状態のロドプシンの立体構造(PDBID:1U19)。H1を青色で示しH8をオレンジ色で示している。7本の膜貫通ヘリックスに加えて膜面に平行なH8が特徴的である。H3は大きく傾いていて細胞質側はH4とH5の間に入り込んでいる。上が円板膜内側、下がGタンパク質と相互作用する細胞質側である。手前のH7にレチナール(11−シス)とその結合部位であるK296、そしてシッフ塩基の対イオンとして機能するH3のE113のアミノ酸、C110-C187のジスフィルド結合、細胞質側にはH3にERYモチーフH7にはNPXXYモチーフのアミノ酸を示している。<br />b:活性化に伴う構造変化。[[wikipedia:JA:基底状態|基底状態]](緑色PDBID:1U19)と較べて[[wikipedia:JA:活性状態|活性状態]]は(オレンジ色PDBID:3PQR)H6が大きく外側に動きH5も細胞質側に伸びるている。また基底状態ではH3とH6間のイオニックロックの相互作用が活性状態では解除されR135はNPXXYモチーフやY223等と新たな相互作用を形成する。]]  
[[Image:Rhodopsin structure.png|thumb|right|300px|'''図2:ロドプシンの立体構造モデル'''<br />a:基底状態のロドプシンの立体構造(PDBID:1U19)。H1を青色で示しH8をオレンジ色で示している。7本の膜貫通ヘリックスに加えて膜面に平行なH8が特徴的である。H3は大きく傾いていて細胞質側はH4とH5の間に入り込んでいる。上が円板膜内側、下がGタンパク質と相互作用する細胞質側である。手前のH7にレチナール(11−シス)とその結合部位であるK296、そしてシッフ塩基の対イオンとして機能するH3のE113のアミノ酸、C110-C187のジスフィルド結合、細胞質側にはH3にERYモチーフH7にはNPXXYモチーフのアミノ酸を示している。<br />b:活性化に伴う構造変化。[[wikipedia:JA:基底状態|基底状態]](緑色PDBID:1U19)と較べて[[wikipedia:JA:活性状態|活性状態]]は(オレンジ色PDBID:3PQR)H6が大きく外側に動きH5も細胞質側に伸びるている。また基底状態ではH3とH6間のイオニックロックの相互作用が活性状態では解除されR135はNPXXYモチーフやY223等と新たな相互作用を形成する。]]  


=== 膜環境 ===
== 膜環境 ==


 膜タンパク質であるロドプシンの分子特性はその膜環境に大きく依存する。ただし、ヘリックス領域に囲まれている発色団の光化学的な特性([[wikipedia:JA:分子吸光係数|分子吸光係数]]、[[wikipedia:JA:量子収率|量子収率]]、[[wikipedia:JA:光感受性|光感受性]]など)は膜環境による影響を受けにくい。一方で、中間体や活性状態の平衡、寿命や生成速度等は膜環境の影響を顕著に受ける。  
 膜タンパク質であるロドプシンの分子特性はその膜環境に大きく依存する。ただし、ヘリックス領域に囲まれている発色団の光化学的な特性([[wikipedia:JA:分子吸光係数|分子吸光係数]]、[[wikipedia:JA:量子収率|量子収率]]、[[wikipedia:JA:光感受性|光感受性]]など)は膜環境による影響を受けにくい。一方で、中間体や活性状態の平衡、寿命や生成速度等は膜環境の影響を顕著に受ける。  
44行目: 43行目:
 桿体外節の円盤膜はPC([[wikipedia:phosphatidylcholine|phosphatidylcholine]])やPE([[wikipedia:phosphatidylethanolamine|phosphatidylethanolamine]])を主成分とし、他にもPS([[wikipedia:phosphatidylserine|phosphatidylserine]])やPI([[wikipedia:phosphatidylinositol|phosphatidylinositol]])を含むことが知られている。また膜の[[wikipedia:JA:コレステロール|コレステロール]]含有量によってロドプシンの活性状態とその前駆体の平衡が変化することが知られている。  
 桿体外節の円盤膜はPC([[wikipedia:phosphatidylcholine|phosphatidylcholine]])やPE([[wikipedia:phosphatidylethanolamine|phosphatidylethanolamine]])を主成分とし、他にもPS([[wikipedia:phosphatidylserine|phosphatidylserine]])やPI([[wikipedia:phosphatidylinositol|phosphatidylinositol]])を含むことが知られている。また膜の[[wikipedia:JA:コレステロール|コレステロール]]含有量によってロドプシンの活性状態とその前駆体の平衡が変化することが知られている。  


=== シッフ塩基プロトン・対イオン ===
== シッフ塩基プロトン・対イオン ==
 ロドプシン中でのレチナールはリシン残基とシッフ塩基結合をしている。分子内でレチナールが共有結合しているのは、いつでも光受容出来るように発色団をタンパク質内に留めておく働きがある。さらにシッフ塩基を介したこの共有結合はロドプシンの機能発現にも重要な役割を果たしている。  
 ロドプシン中でのレチナールはリシン残基とシッフ塩基結合をしている。分子内でレチナールが共有結合しているのは、いつでも光受容出来るように発色団をタンパク質内に留めておく働きがある。さらにシッフ塩基を介したこの共有結合はロドプシンの機能発現にも重要な役割を果たしている。  


53行目: 52行目:
[[Image:Central Ionic Lock.png|thumb|right|300px|'''図3:シッフ塩基・対イオン・塩橋'''<br />ヘッリックス7の296番目のリシン残基の正電荷とヘリックス3の対イオンの負電荷は塩橋を形成し、リガンド非結合状態の受容体で不活性状態を安定化する。11-cis-retinalが結合した状態でもシッフ塩基プロトンと対イオンの間で塩橋が生じ不活性状態を安定化する。]]  
[[Image:Central Ionic Lock.png|thumb|right|300px|'''図3:シッフ塩基・対イオン・塩橋'''<br />ヘッリックス7の296番目のリシン残基の正電荷とヘリックス3の対イオンの負電荷は塩橋を形成し、リガンド非結合状態の受容体で不活性状態を安定化する。11-cis-retinalが結合した状態でもシッフ塩基プロトンと対イオンの間で塩橋が生じ不活性状態を安定化する。]]  


=== 構造モチーフ ===
== 構造モチーフ ==
 ロドプシン類あるいはGタンパク質共役型受容体(GPCR)のファミリー間で良く保存されている構造モチーフが幾つか知られており、これらは受容体の機能発現に重要である<ref><pubmed> 19836958 </pubmed></ref>。  
 ロドプシン類あるいはGタンパク質共役型受容体(GPCR)のファミリー間で良く保存されている構造モチーフが幾つか知られており、これらは受容体の機能発現に重要である<ref><pubmed> 19836958 </pubmed></ref>。  


 (D/E)R(Y/W)モチーフはファミリーAのGPCR間でよく保存されている構造モチーフで、ロドプシンではH3の細胞質側末端のE134/R135/Y136に相当する。また、H7とH8の先端にある302番目から306番目の残基はNPXXYモチーフと呼ばれ、このモチーフもファミリー1のGPCRの間でよく保存されている。ロドプシンの暗状態ではR135とE134の間に塩橋がある。また、R135はH6に存在するE247とT251との間で静電的な相互作用をしている(これらの相互作用を通常Ionic Lockと呼ぶ)。ロドプシンが光を受容することによりタンパク質部分の構造変化がおこると、E134は溶液中のプロトンと結合して中性になる。その結果、E134とR135の塩橋がなくなり、R135はNPXXYモチーフ中のY306やその他の残基(M257やY223)と新たな相互作用ネットワークを形成し、ロドプシンの活性構造の形成に寄与していると考えられている(図2参照)。  
 (D/E)R(Y/W)モチーフはファミリーAのGPCR間でよく保存されている構造モチーフで、ロドプシンではH3の細胞質側末端のE134/R135/Y136に相当する。また、H7とH8の先端にある302番目から306番目の残基はNPXXYモチーフと呼ばれ、このモチーフもファミリー1のGPCRの間でよく保存されている。ロドプシンの暗状態ではR135とE134の間に塩橋がある。また、R135はH6に存在するE247とT251との間で静電的な相互作用をしている(これらの相互作用を通常Ionic Lockと呼ぶ)。ロドプシンが光を受容することによりタンパク質部分の構造変化がおこると、E134は溶液中のプロトンと結合して中性になる。その結果、E134とR135の塩橋がなくなり、R135はNPXXYモチーフ中のY306やその他の残基(M257やY223)と新たな相互作用ネットワークを形成し、ロドプシンの活性構造の形成に寄与していると考えられている(図2参照)。
 


== 吸収スペクトル ==
== 吸収スペクトル ==