「カルモジュリン」の版間の差分

提供:脳科学辞典
ナビゲーションに移動 検索に移動
編集の要約なし
(3人の利用者による、間の95版が非表示)
1行目: 1行目:
<div align="right"> 
カルモジュリン 英:Calmodulin
<font size="+1">[http://researchmap.jp/hajimechan 藤井 哉]</font><br>
''東京大学医学系研究科神経生化学教室''<br>
DOI:<selfdoi /> 原稿受付日:2015年8月7日 原稿完成日:2015年9月30日<br>
担当編集委員:[http://researchmap.jp/wadancnp 和田 圭司](国立研究開発法人国立精神・神経医療研究センター)<br>
</div>


英:calmodulin
==要約==
カルモジュリンは148アミノ酸残基、分子量約16.7kDa、酸性の[[CA2|Ca2]]+結合タンパク質であり、それぞれ2つのEFハンドドメインからなるN末側ドメインとC末側ドメインがリンカーでつながった構造をしている。カルモジュリンは、酵母、植物、昆虫から[[ヒト]]まで真核生物に発現しており、特に脊椎動物の中では高い保存性を示す。Ca2+と結合し、下流のタンパク質に結合して活性などを調節し、Ca2+センサーとしてCa2+シグナル伝達の中でも非常に重要な役割を果たす。特に脳においては、神経発生、軸策突起進展、[[長期記憶]]など様々な機能に関わる。


{{box|text= カルモジュリンは148アミノ酸残基、分子量約16.7kDa、酸性の[[Ca2+|Ca<sup>2+</sup>]]+結合タンパク質であり、それぞれ2つのEFハンドドメインからなるN末側ドメインとC末側ドメインがリンカーでつながったダンベル様構造をしている。カルモジュリンは、酵母、植物、昆虫から[[ヒト]]まで真核生物に発現しており、特に脊椎動物の中では高い保存性を示す。Ca<sup>2+</sup>と結合することで、Ca<sup>2+</sup>バッファーとして働くほか、下流のタンパク質に結合して活性などを調節し、Ca<sup>2+</sup>センサーとしてCa<sup>2+</sup>シグナル伝達の中でも非常に重要な役割を果たす。特に脳においては、Ca<sup>2+</sup>シグナル伝達をコントロールする中心的な役割を担い、神経突起形成、軸索伸展、シナプス形成、シナプス可塑性、記憶・学習など様々な機能に関わる。}}
{{Pfam_box
| Symbol = efhand
| Name = カルモジュリン
| image = 3CLN.pdb
| width =
| caption = カルモジュリンEF-handの結晶構造<ref><pubmed>3145979</pubmed></ref>
| Pfam= PF00036
| PROSITE=PDOC00018
| InterPro= IPR002048
| SMART=
| SCOP = 1osa
| TCDB =
| OPM family=
| OPM protein= 1djx
| CDD = cd00051
}}
{{PBB|geneid=801}}{{PBB|geneid=805}}{{PBB|geneid=808}}
==発見==
==発見==
 1970年、Kakiuchiらは、[[ラット]][[脳]]抽出物中の[[環状ヌクレオチドフォスフォジエステラーゼ]]活性が[[Ca2+|Ca<sup>2+</sup>]]により制御されることを報告し<ref name=ref1>'''S Kakiuchi, R Yamazaki'''<br>Stimulation of the activity of cyclic 3',5'-nucleotide phosphodiesterase by [[calcium]] ion.<br>''Proc. Japan Acad. 46, 387-392'':1970</ref>、このCa<sup>2+</sup>依存性を担う調節因子を見出した<ref>'''S Kakiuchi, R Yamazaki, H Nakajima'''<br>Properties of a heat-stable phosphodiesterase activating factor isolated from brain extract<br>''Proc. Japan Acad. 46, 587-592'':1970</ref><ref><pubmed> 4320714 </pubmed></ref>。また、同じ1970年に独立してCheungは環状ヌクレオチドフォスフォジエステラーゼの活性が精製の過程で減弱することから、精製の過程で分離される分画より活性化因子を発見し報告した<ref><pubmed> 4315350</pubmed></ref>
1970年、Kakiuchiらは、ラット脳抽出物中の環状ヌクレオチドフォスフォジエステラーゼ活性がEGTA存在下において抑制されることから、Ca2+によりこの酵素の活性が制御されることを報告し、<ref>'''S Kakiuchi, R Yamazaki'''<br>Stimulation of the activity of cyclic 3',5'-nucleotide phosphodiesterase by [[calcium]] ion.<br>''Proc. Japan Acad. 46, 387-392'':1970</ref>、このCa2+依存性が熱安定性が高い活性化因子によることを見出した<ref><pubmed> 4320714 </pubmed></ref>。また、同じ1970年に独立してCheungは環状ヌクレオチドフォスフォジエステラーゼの活性が精製の過程で減弱することから、精製の過程で環状ヌクレオチドフォスフォジエステラーゼと分離される分画より活性化因子を報告した<ref><pubmed> 4315350</pubmed></ref>。1973年にTeoとWangらはウシの心臓からこの活性化因子を精製し<ref><pubmed>4346337</pubmed></ref>、45Caとゲル濾過の手法を用いてその正体がCa2+結合タンパク質であることを示した<ref><pubmed> 4353626 </pubmed></ref>。その後、トロポニンCに特性が類似したタンパク質であることが示され<ref><pubmed> 181374 </pubmed></ref> <ref><pubmed> 181375 </pubmed></ref>、アミノ酸配列が決定され<ref><pubmed> 7356670 </pubmed></ref>、分光学的解析によってCa2+結合に伴って構造が変化することが示された<ref><pubmed> 14663 </pubmed></ref> <ref><pubmed> 193856 </pubmed></ref> <ref><pubmed> 200611 </pubmed></ref>。その呼び名は研究グループによって、activator protein, modulator protein, Ca2+dependent regulator protein (CDR), Phosphodiesterase Activating Factor (PAF)などさまざまに呼ばれたが、1970年代末にCacium modulated proteinからCalmodulin、カルモジュリンという名称が付けられた<ref>"WY Cheung, Calcium and Cell Function: Volume 1"</ref><ref><pubmed> 208377 </pubmed></ref>。
 
 1973年にTeoとWangらは[[ウシ]]の心臓からこの活性化因子を精製し<ref><pubmed>4346337</pubmed></ref>、これらの別々に発見された因子の正体が同一のCa<sup>2+</sup>結合タンパク質であることを示した<ref><pubmed> 4353626 </pubmed></ref><ref>'''日高弘義、垣内史朗 編'''<br>カルモデュリン―Ca<sup>2+</sup>受容蛋白質<br>1981</ref>。
 
 その後、[[トロポニンC]]に特性が類似したタンパク質であることが示され<ref><pubmed> 181374 </pubmed></ref> <ref><pubmed> 181375 </pubmed></ref>、アミノ酸配列が決定され<ref name=ref10><pubmed> 7356670 </pubmed></ref>、分光学的解析によってCa<sup>2+</sup>結合に伴って構造が変化することが示された<ref><pubmed> 14663 </pubmed></ref> <ref><pubmed> 193856 </pubmed></ref> <ref><pubmed> 200611 </pubmed></ref>。その呼び名は研究グループによって、activator protein, modulator protein, Ca<sup>2+</sup>dependent regulator protein(CDR)、Phosphodiesterase Activating Factor(PAF)などさまざまに呼ばれたが、1970年代末にcalmodulinという名称が付けられた<ref>'''WY Cheung ed.'''<br>Calcium and Cell Function: Volume 1 Calmodulin<br>1980 ''Academic Press'', New York, ISBN 1483204030</ref><ref><pubmed> 208377 </pubmed></ref>。


==構造==
==構造==
 カルモジュリンは148残基のアミノ酸からなる、分子量約16.7kDaのタンパク質である。1985年にCa<sup>2+</sup>存在下のウシ由来カルモジュリンの[[X線結晶構造]]が解かれ、原子レベルでの構造が明らかになった<ref name=ref16><pubmed> 3990807 </pubmed></ref>。Ca2+と結合する4つのヘリックス・ループ・ヘリックス構造の[[EFハンドモチーフ]]を持ち、2つずつがそれぞれペアとなって球状のN末側ドメイン、C末側ドメインを形成し、その間をリンカーがつながったダンベル様の構造をしている。それぞれの球状のドメインの大きさは約25×20×20 Åであり、分子全体としては長軸が約65 Åの長さである<ref name=ref16 />。
カルモジュリンは148残基のアミノ酸からなる、分子量約16.7kDaのタンパク質である。1985年にウシ由来カルモジュリンのX線結晶構造が解かれ、原子レベルでの構造が明らかになった<ref><pubmed> 3990807 </pubmed></ref>。Ca2+と結合する4つのヘリックス・ループ・ヘリックス構造のEFハンドモチーフを持ち、2つずつがそれぞれペアとなってN末側ドメイン、C末側ドメインを形成し、その間をリンカーがつながったダンベル様の構造をしている。Ca2+と結合することで、疎水性領域が露出し、ターゲットとなるタンパク質のカルモジュリン結合ドメインと相互作用する。


==サブファミリー==
==サブファミリー==
 ヒトのCalmodulin1、Calmodulin2、Calmodulin3は同一のアミノ酸配列のタンパク質をコードしており、それぞれ[[染色体]]上の14q24-q31、2p21.1-p21.3、19q13.2-q13.3に位置する('''表1''')<ref><pubmed>8314583</pubmed></ref>。
Calmodulin1
 
Calmodulin2
{|class="wikitable"
Calmodulin3
|+表1. ヒトカルモジュリン遺伝子
!タンパク質名称
!NCBI遺伝子情報
!NCBI mRNA情報 (RefSeq)
!HUGO遺伝子命名法委員会 (HGNC)
!Allen mouse brain
|-
|Calmodulin1||[http://www.ncbi.nlm.nih.gov/gene/801 801]||[http://www.ncbi.nlm.nih.gov/nuccore/NM_006888 NM_006888]||[http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=HGNC:1442 CALM1]||[http://mouse.brain-map.org/gene/show/12098 12098]
|-
|Calmodulin2||[http://www.ncbi.nlm.nih.gov/gene/805 805]||[http://www.ncbi.nlm.nih.gov/nuccore/NM_001743 NM_001743]||[http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=HGNC:1445 CALM2]||[http://mouse.brain-map.org/gene/show/12099 12099]
|-
|Calmodulin3||[http://www.ncbi.nlm.nih.gov/gene/808 808]||[http://www.ncbi.nlm.nih.gov/nuccore/NM_005184 NM_005184]||[http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=HGNC:1449 CALM3]||[http://mouse.brain-map.org/gene/show/12100 12100]
|}


 その他、[[酵母]]、[[植物]]、[[昆虫]]からヒトまで[[真核生物]]に発現しており、特に[[脊椎動物]]の中では高い保存性を示す。
ヒト、[[ラット]]のCalmodulin1, Calmodulin2, Calmodulin3は同一のアミノ酸配列のタンパク質をコードしている。


==機能==
==機能==
 カルモジュリンは脳内で10~100 &micro;mol/lの濃度で発現しており<ref><pubmed> 15803158 </pubmed></ref>、細胞内で上昇したCa<sup>2+</sup>と結合し、Ca<sup>2+</sup>バッファーとして働くのに加え、様々なカルモジュリン結合タンパク質と結合して生理機能を発揮する('''表2''')。
カルモジュリンは脳内で10~100マイクロモル/リットルの濃度で発現しており、細胞内で上昇したCa2+と結合し、様々なカルモジュリン結合タンパク質と結合して生理機能を発揮する。カルモジュリン結合タンパク質の多くはCa2+依存的であり、Ca2+/カルモジュリンと結合するが、Ca2+と結合していないカルモジュリンと結合するタンパク質や、Ca2+非依存的に結合するタンパク質も存在する。カルモジュリンの主要な機能は、細胞内のCa2+濃度の変化を感知し、カルモジュリン結合タンパクの機能制御を通じて、細胞機能を制御することである。


=== エフェクタータンパク質 ===
カルモジュリン結合タンパク質としては、環状ヌクレオチド代謝酵素(フォスフォジエステラーゼ、アデニル酸シクラーゼ)、膜タンパク質([[ATP]]依存的Ca2+ポンプ、代謝型[[グルタミン酸]]受容体、[[L型カルシウムチャネル]]、IP3 受容体)、リン酸化酵素(MLCK、Ca2+/CaM依存的キナーゼI/II/IV、ホスホリラーゼキナーゼ)、 脱リン酸化酵素([[カルシニューリン]])、 [[細胞骨格]]系タンパク質(カルデスモン、MAP2、アデューシン、カルスペクトリン、ミオシン)、シグナル伝達タンパク質(RasGRF1、[[一酸化窒素]]合成酵素)などが知られている。こうした様々なタンパク質と結合し、その活性や機能を制御することがカルモジュリンの機能である。
 カルモジュリンの主要な機能は、細胞内のCa<sup>2+</sup>濃度の変化を感知し、カルモジュリン結合タンパク質の機能制御を通じて、細胞機能を制御(活性化、抑制)することであり、その具体的な効果はターゲットとなる下流のタンパク質によって様々に異なる。多くはCa<sup>2+</sup>依存性がありCa<sup>2+</sup>/カルモジュリンと結合するが、Ca<sup>2+</sup>と結合していないカルモジュリンと結合するタンパク質や、Ca<sup>2+</sup>非依存的に結合するタンパク質も存在する。


 Ca<sup>2+</sup>に対する親和性の違いから、C末側ドメインはN末側ドメインに比べCa<sup>2+</sup>に対する親和性が高く、in vitroでトリプシン処理により得られたN末側/C末側ドメインのCa<sup>2+</sup>親和性をpH 7.5, 100 mM KCl, 25 ℃の条件下で測定した場合には、それぞれ1.5~100 μM、0.4~10 μMである<ref><pubmed> 1902469</pubmed></ref>。Ca<sup>2+</sup>依存的な結合の場合、カルモジュリンがCa<sup>2+</sup>と結合することで、疎水性領域が露出し、ターゲットとなるタンパク質のカルモジュリン結合ドメインにある疎水性のアミノ酸残基と相互作用する。この疎水性アミノ酸残基の位置によって、幾つかのもシーフに分類される<ref><pubmed> 9141499</pubmed></ref><ref><pubmed>23601118 </pubmed></ref><ref><pubmed> 25998729 </pubmed></ref>。
* 1-14モチーフ:([[ミオシン軽鎖キナーゼ]]([[myosin light-chain kinase]], [[MLCK]])、[[カルシニューリン]]、[[Ca2+/カルモジュリン依存性タンパク質キナーゼIV|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼIV]]([[CaMKIV]])、[[一酸化窒素合成酵素]]([[NOS]]))
* 1-10モチーフ:([[Ca2+/カルモジュリン依存性タンパク質キナーゼII|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼII]]([[CaMKII]])、[[シナプシン]]、[[熱ショックタンパク質]]70/90)
* 1-16モチーフ:([[Ca2+/カルモジュリン依存性タンパク質キナーゼキナーゼ|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼキナーゼ]], [[CaMKK]])
* IQモチーフ:Ca<sup>2+</sup>非依存的な結合タンパク質に多い。コンセンサス配列はIQXXXRGXXXRである。
 また、カルモジュリンは[[リン酸化]]<ref><pubmed>6621532</pubmed></ref>や[[糖化]]<ref><pubmed>2541779</pubmed></ref>、[[メチル化]]<ref name=ref10 />など[[翻訳後修飾]]を受け、機能を調節することが知られている<ref><pubmed>1314563</pubmed></ref><ref><pubmed>9572870</pubmed></ref>。
{|class="wikitable"
|+表2. カルモジュリン結合タンパク質
!colspan="2"|タンパク質名称
!参考文献
|-
|rowspan="2" |[[環状ヌクレオチド]]代謝酵素||[[ホスホジエステラーゼ]]||<ref name=ref1 />
|-
|[[アデニル酸シクラーゼ]]||<ref><pubmed>284333 </pubmed></ref><ref><pubmed>2472670 </pubmed></ref><ref><pubmed>1719547 </pubmed></ref>
|-
|rowspan="6" |[[膜タンパク質]]||[[細胞膜カルシウムATPアーゼ]] ([[plasma membrane Ca2+-ATPase|plasma membrane Ca<sup>2+</sup>-ATPase]]; [[PMCA]])||<ref><pubmed> 197955 </pubmed></ref><ref><pubmed> 197956 </pubmed></ref><ref><pubmed>2154244 </pubmed></ref>
|-
|[[NMDA型グルタミン酸受容体]]||<ref><pubmed>8625412 </pubmed></ref>
|-
|[[代謝活性型グルタミン酸受容体]]||<ref><pubmed> 9242710 </pubmed></ref><ref><pubmed>10488094 </pubmed></ref>
|-
|[[L型カルシウムチャネル]]||<ref><pubmed>10197534 </pubmed></ref><ref><pubmed>10335846 </pubmed></ref>
|-
|[[P/Q型カルシウムチャネル]]||<ref><pubmed>10335845 </pubmed></ref>
|-
|[[IP3受容体|IP<sub>3</sub>受容体]]||<ref><pubmed> 1845986</pubmed></ref>)
|-
|rowspan="6" |[[リン酸化酵素]]||[[ミオシン軽鎖キナーゼ]] ([[MLCK]])||<ref><pubmed> 6896283 </pubmed></ref><ref><pubmed> 3858814 </pubmed></ref><ref><pubmed> 3754463 </pubmed></ref><ref><pubmed> 3800388 </pubmed></ref>
|-
|[[Ca2+/カルモジュリン依存性タンパク質キナーゼI|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼI]] ([[CaMKI]])||<ref><pubmed> 6785753</pubmed></ref>
|-
|[[Ca2+/カルモジュリン依存性タンパク質キナーゼII|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼII]] ([[CaMKII]])||<ref><pubmed>  628428</pubmed></ref><ref><pubmed> 7409141</pubmed></ref>
|-
|[[Ca2+/カルモジュリン依存性タンパク質キナーゼIV|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼIV]] ([[CaMKIV]])||<ref><pubmed>2538431</pubmed></ref>
|-
|[[Ca2+/カルモジュリン依存性タンパク質キナーゼキナーゼ|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼキナーゼ]] ([[CaMKK]])||<ref><pubmed>7961813 </pubmed></ref><ref><pubmed>7641687 </pubmed></ref>
|-
|[[ホスホリラーゼキナーゼ]]||<ref><pubmed>212300 </pubmed></ref>)
|-
|[[脱リン酸化酵素]]||[[カルシニューリン]]||<ref><pubmed> 193860 </pubmed></ref><ref><pubmed> 201280 </pubmed></ref>
|-
|rowspan="4"|[[細胞骨格]]系タンパク質||[[MAP2]]||<ref name=ref48><pubmed> 6420403</pubmed></ref>
|-
|[[タウ]]||<ref name=ref48 />
|-
|[[アデューシン]]||<ref><pubmed>3511042 </pubmed></ref>
|-
|[[ミオシン]]||<ref><pubmed> 574874</pubmed></ref><ref><pubmed> 2460467</pubmed></ref><ref><pubmed> 2687288</pubmed></ref><ref><pubmed> 2525564</pubmed></ref>
|-
|colspan="2"|[[一酸化窒素合成酵素]]||<ref><pubmed> 1689048 </pubmed></ref><ref><pubmed>2370855 </pubmed></ref>
|-
|colspan="2"|[[熱ショックタンパク質70]]/[[熱ショックタンパク質90|90]]||<ref><pubmed> 3782106 </pubmed></ref><ref><pubmed>2154682 </pubmed></ref>
|}
===神経系での機能===
==== 神経回路の発達 ====
 [[神経突起]]形成<ref><pubmed> 12873385 </pubmed></ref><ref><pubmed>17553424  </pubmed></ref>、[[軸索]]伸展<ref><pubmed>15363394 </pubmed></ref><ref><pubmed>19864584 </pubmed></ref><ref><pubmed>24849351  </pubmed></ref>、シナプスの形成<ref><pubmed> 18184567 </pubmed></ref>などを通して、神経回路の発達に関わる。
 例えば、発生期に神経細胞が軸索を伸展し標的となる細胞に投射して神経回路を構築する際には、軸索の先端部は[[成長円錐]]を形成し、細胞外の[[軸索ガイダンス分子]]などのシグナルに応じて誘引されたり反発されたりすることで、その伸展する方向を制御している。[[アフリカツメガエル]]の[[脊髄]]神経細胞や[[ニワトリ]]の[[後根神経節]]細胞を用いた実験などから、ガイダンス分子として[[ネトリン1]]<ref><pubmed>  10638760 </pubmed></ref><ref><pubmed>  15758951  </pubmed></ref>や[[SEMA3A]]<ref><pubmed>  18549782 </pubmed></ref><ref><pubmed>  18536712 </pubmed></ref>をはじめさまざま知られており、これらは受容体を介して局所的なCa<sup>2+</sup>上昇を引き起こし、その濃度や局在によってカルモジュリンは異なるターゲットを活性化し、成長円錐の誘引や反発をコントロールしている。
==== シナプス可塑性、記憶・学習 ====
 脳機能において、カルモジュリンは、そのターゲットとなるCaMKII、カルシニューリン、アデニル酸シクラーゼなどの下流のエフェクター酵素の制御を通しての[[シナプス可塑性]]や[[記憶]]・[[学習]]の制御に関して不可欠な役割を果たしている。
 海馬CA1領域における[[長期増強]]や[[長期抑圧]]は[[NMDA型グルタミン酸受容体]]の活性化によりCa<sup>2+</sup>が流入し、カルモジュリンと結合することで下流の酵素を活性化して引き起こされる。中でも、カルモジュリンの脳内での主要なターゲットのひとつであるCaMKIIは、Ca<sup>2+</sup>濃度の低い基底状態ではカルモジュリン結合ドメインとオーバーラップしている自己抑制ドメインによってそのキナーゼ活性が低く抑えられているが、Ca<sup>2+</sup>上昇に伴ってCa<sup>2+</sup>/カルモジュリンと結合し、コンフォメーションが変化することでこの自己抑制がはずれ、活性化する<ref><pubmed>12045104 </pubmed></ref>。また、CaMKIIは12量体を作っており<ref><pubmed>6315430  </pubmed></ref><ref><pubmed>21884935 </pubmed></ref>、活性化に伴って隣接するキナーゼサブユニットの間で286番目の[[スレオニン]]が[[リン酸化]]することで、Ca<sup>2+</sup>/カルモジュリンとの親和性が高くなるとともに<ref><pubmed>1317063  </pubmed></ref>、Ca<sup>2+</sup>/カルモジュリンが解離した後も部分的な活性を持続する"Autonomous"な状態を保持することができる<ref><pubmed>3006921  </pubmed></ref><ref><pubmed>3467320  </pubmed></ref>。CaMKIIは海馬の[[シェーファー側枝]]から[[CA1]][[錐体細胞]]への長期増強に関わることがが報告されており<ref><pubmed> 2847049</pubmed></ref><ref><pubmed>2549423 </pubmed></ref><ref><pubmed>1378648 </pubmed></ref>、CaMKIIαの[[ノックアウトマウス]]や[[点変異]]導入マウスでは海馬依存的な[[空間学習]]に異常がみられる<ref><pubmed> 1321493</pubmed></ref><ref><pubmed>9452388 </pubmed></ref>。
 
 同様にカルモジュリンによって活性化される[[アデニル酸シクラーゼ1]]、[[アデニル酸シクラーゼ8|8]]やカルシニューリンもシナプス可塑性や記憶・学習に関与することが薬理学的実験や[[遺伝子改変動物]]実験などによって報告されている<ref><pubmed> 7515479 </pubmed></ref><ref><pubmed>10200317 </pubmed></ref><ref><pubmed>10482244</pubmed></ref><ref><pubmed>11733061 </pubmed></ref>。
 こうした電気生理学的・行動学的な変化を引き起こす分子・細胞生物学的なプロセスとして、カルモジュリンはCa<sup>2+</sup>流入に伴う[[スパイン]]の[[構造的可塑性]]の誘導<ref><pubmed>15190253 </pubmed></ref><ref><pubmed>15572107</pubmed></ref><ref><pubmed>23269840</pubmed></ref>や[[アクチン]][[細胞骨格]]の再構築<ref><pubmed>18341992</pubmed></ref><ref><pubmed>17404223</pubmed></ref>、種々の酵素の活性化<ref><pubmed> 26139370 </pubmed></ref><ref><pubmed> 19295602</pubmed></ref><ref><pubmed> 23602566 </pubmed></ref>や[[CREB]]を介した新規遺伝子発現<ref><pubmed>  8980227</pubmed></ref><ref><pubmed>19116276</pubmed></ref><ref><pubmed> 25277455 </pubmed></ref>に関わることが示されている。また、数あるカルモジュリン依存的な酵素の活性化は均等に起こるのではなく、Ca<sup>2+</sup>流入に伴うカルモジュリン依存的な酵素の活性化は均等に起こるのではなく、神経入力のパターンに応じて上昇したCa<sup>2+</sup>の時間的・空間的拡がりに応じて異なる強弱で活性化され、状況に応じて適切な神経細胞機能を発現していると考えられている<ref><pubmed> 12154335 </pubmed></ref><ref><pubmed> 23602566 </pubmed></ref>。
==阻害剤==
==阻害剤==
 1974年にWeissらが、カルモジュリンにより活性化される脳のホスホジエステラーゼに対する[[フェノチアジン]]誘導体の阻害効果の作用機序およびキネティクスを報告し、[[カルモジュリン阻害剤]]であることを示した<ref>'''B Weiss, R. Fertel, R Figlin, and P Uzunov'''<br>Selective alteration of the activity of the multiple forms of adenosine 3', 5'-monophosphate phosphodiesterase of rat cerebrum<br>''Mol. Pharmacol. 10, 615-625'':1974</ref>(これに先立つ1968年、Hondaらはフェノチアジン誘導体の環状ヌクレオチドホスホジエステラーゼに対する阻害効果が脳由来の酵素と心臓由来の酵素で異なることを報告している<ref><pubmed>4298921</pubmed></ref>)。この後、[[W-7]]<ref><pubmed>6254958 </pubmed></ref>や[[カルミダゾリウム]]<ref>'''H Van Belle'''<br>R 24 571: A potent inhibitor of calmodulin-activated enzymes.<br>''Cell Calcium 2, 483-494'':1981</ref>など、さまざまな物質がカルモジュリン阻害剤として働くことが見出されている<ref><pubmed>17400264 </pubmed></ref><ref><pubmed>25536331 </pubmed></ref>。
W-7<ref><pubmed>6254958 </pubmed></ref> ナフタレンスルホンアミド誘導体。カルモジュリンの疎水性領域に結合する。
 
==疾患と関連するカルモジュリンの変異==
 カルモジュリンの点突然変異が、[[カテコールアミン誘発性多形性心室性頻拍]]、[[QT延長症候群]]、特発性[[心室細動]]で見出されている('''表3''')。
{|class="wikitable"
|+表3. 疾患と関連するカルモジュリンの変異
!疾患名
!遺伝子名
!変異
!文献
|-
|rowspan=2|[[カテコールアミン誘発性多形性心室性頻拍]] (CPVT)||rowspan=2|CALM1||N53I||<ref name=ref67><pubmed>23040497</pubmed></ref>
|-
|N97S||<ref name=ref67 />
|-
|rowspan=7|[[QT延長症候群]] (LQTS)||rowspan=2|CALM1||D129G||<ref name=ref68><pubmed>23388215</pubmed></ref>
|-
|F141L||<ref name=ref68 />
|-
|rowspan=4|CALM2||D95V||<ref name=ref69><pubmed>24917665</pubmed></ref>
|-
|N97S||<ref name=ref69></ref>
|-
|N97I||<ref name=ref68 />
|-
|D133H||<ref name=ref69></ref>
|-
|CLAM3||D129G||<ref><pubmed>25460178</pubmed></ref>
|-
|rowspan=2|CPVT・LQTSの合併||rowspan=2|CALM2||D131E||<ref name=ref69></ref>
|-
|Q135P||<ref name=ref69></ref>
|-
|特発性[[心室細動]](IVF)||CALM1||F89L|| <ref><pubmed>24076290</pubmed></ref>
|}
 また、癌ゲノム解析により、多数の体細胞変異が見つかっているが、その機能については良く分かっていない<ref>[http://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=CALM1#muts CALM1 COSMIC database]</ref><ref>[http://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=CALM2#muts CALM2 COSMIC database]</ref><ref>
[http://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=CALM3#muts CALM3 COSMIC database]</ref>。
 
==カルモジュリンを用いたCa<sup>2+</sup>インディケーター==
 カルモジュリンがCa<sup>2+</sup>依存的にターゲットペプチドと相互作用することを用いて、様々な[[Genetically-encoded Ca2+ indicator|Genetically-encoded Ca<sup>2+</sup> indicator]]が開発されている。大まかには、2色の異なる色の[[蛍光タンパク質]]間の[[蛍光共鳴エネルギー移動]]を用いてその2色の蛍光強度の比をレシオメトリック測定することが可能な[[FRET]]センサー([[Cameleon]]など)と<ref><pubmed> 9148946 </pubmed></ref><ref><pubmed> 9278050 </pubmed></ref>、[[円順列変異]][[GFP]]を用いてその蛍光強度からCa<sup>2+</sup>濃度を測定する緑色蛍光プローブ([[G-CaMP]]など)がある<ref><pubmed> 11175727 </pubmed></ref><ref><pubmed> 11248055 </pubmed></ref>。[[Cameleon]]の場合、Ca<sup>2+</sup>と結合したカルモジュリンがそのターゲットのM13ペプチドと結合することでコンフォメーションが変化し、2色の蛍光タンパク質の間での[[蛍光共鳴エネルギー移動]]の効率が変わることを利用している。一方で、[[G-CaMP]]の場合には、カルモジュリンとM13ペプチドの結合によるコンフォメーション変化が発色団周囲の環境を変化させることにより、蛍光強度が変化することを利用している。


 2000年代以降、これらの改良が進んでおり、変化率を大きくしたものや単一活動電位を記録できる高感度のもの、キネティクスが速いもの、さまざまな色のインディケーターなどが開発され、生きた動物個体の中での神経細胞やシナプスの活動を長期間観察するのに用いられている<ref><pubmed>15247428 </pubmed></ref><ref><pubmed>16720273 </pubmed></ref><ref><pubmed>19160514 </pubmed></ref><ref><pubmed>19160515 </pubmed></ref><ref><pubmed>19898485 </pubmed></ref><ref><pubmed>21903779 </pubmed></ref><ref><pubmed>23868258 </pubmed></ref><ref><pubmed>24390440 </pubmed></ref><ref><pubmed>25419959</pubmed></ref><ref><pubmed>25678659</pubmed></ref>。
カルミダゾリウム (Van Belle, 1989)


==関連項目==
==カルモジュリンを用いたCa2+インディケーター==
* [[Ca2+/カルモジュリン依存性タンパク質キナーゼ|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼ]]
カルモジュリンがCa2+依存的にターゲットペプチドと相互作用することを用いて、様々なGenetically-encoded Ca2+ indicatorが開発されている。大まかには、2色の異なる色の蛍光タンパク質間の蛍光共鳴エネルギー移動を用いてその2色の蛍光強度の比をレシオメトリック測定することが可能なFRETセンサー(Cameleonなど)と<ref><pubmed> 9148946 </pubmed></ref><ref><pubmed> 9278050 </pubmed></ref>、円順列変異[[GFP]]を用いてその蛍光強度からCa2+濃度を測定する単色蛍光プローブ(G-CaMPなど)がある<ref><pubmed> 11175727 </pubmed></ref><ref><pubmed> 11248055 </pubmed></ref>。2010年前後から、GCaMPの改良が進んでおり、さまざまな色のインディケーターの開発や脳活動を神経細胞レベルで長期間観察するのに用いられている<ref><pubmed>19898485 </pubmed></ref><ref><pubmed>21903779 </pubmed></ref><ref><pubmed>23868258 </pubmed></ref><ref><pubmed>25419959</pubmed></ref>。
* [[Ca2+/カルモジュリン依存性タンパク質キナーゼI|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼI]] ([[CaMKI]])
* [[Ca2+/カルモジュリン依存性タンパク質キナーゼII|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼII]] ([[CaMKII]])
* [[Ca2+/カルモジュリン依存性タンパク質キナーゼIV|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼIV]] ([[CaMKIV]])
* [[Ca2+/カルモジュリン依存性タンパク質キナーゼキナーゼ|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼキナーゼ]] ([[CaMKK]])
* [[カルシニューリン]]


==参考文献==
<references/>
<references/>

2015年7月19日 (日) 16:51時点における版

カルモジュリン 英:Calmodulin

要約

カルモジュリンは148アミノ酸残基、分子量約16.7kDa、酸性のCa2+結合タンパク質であり、それぞれ2つのEFハンドドメインからなるN末側ドメインとC末側ドメインがリンカーでつながった構造をしている。カルモジュリンは、酵母、植物、昆虫からヒトまで真核生物に発現しており、特に脊椎動物の中では高い保存性を示す。Ca2+と結合し、下流のタンパク質に結合して活性などを調節し、Ca2+センサーとしてCa2+シグナル伝達の中でも非常に重要な役割を果たす。特に脳においては、神経発生、軸策突起進展、長期記憶など様々な機能に関わる。

発見

1970年、Kakiuchiらは、ラット脳抽出物中の環状ヌクレオチドフォスフォジエステラーゼ活性がEGTA存在下において抑制されることから、Ca2+によりこの酵素の活性が制御されることを報告し、[1]、このCa2+依存性が熱安定性が高い活性化因子によることを見出した[2]。また、同じ1970年に独立してCheungは環状ヌクレオチドフォスフォジエステラーゼの活性が精製の過程で減弱することから、精製の過程で環状ヌクレオチドフォスフォジエステラーゼと分離される分画より活性化因子を報告した[3]。1973年にTeoとWangらはウシの心臓からこの活性化因子を精製し[4]、45Caとゲル濾過の手法を用いてその正体がCa2+結合タンパク質であることを示した[5]。その後、トロポニンCに特性が類似したタンパク質であることが示され[6] [7]、アミノ酸配列が決定され[8]、分光学的解析によってCa2+結合に伴って構造が変化することが示された[9] [10] [11]。その呼び名は研究グループによって、activator protein, modulator protein, Ca2+dependent regulator protein (CDR), Phosphodiesterase Activating Factor (PAF)などさまざまに呼ばれたが、1970年代末にCacium modulated proteinからCalmodulin、カルモジュリンという名称が付けられた[12][13]

構造

カルモジュリンは148残基のアミノ酸からなる、分子量約16.7kDaのタンパク質である。1985年にウシ由来カルモジュリンのX線結晶構造が解かれ、原子レベルでの構造が明らかになった[14]。Ca2+と結合する4つのヘリックス・ループ・ヘリックス構造のEFハンドモチーフを持ち、2つずつがそれぞれペアとなってN末側ドメイン、C末側ドメインを形成し、その間をリンカーがつながったダンベル様の構造をしている。Ca2+と結合することで、疎水性領域が露出し、ターゲットとなるタンパク質のカルモジュリン結合ドメインと相互作用する。

サブファミリー

Calmodulin1 Calmodulin2 Calmodulin3

ヒト、ラットのCalmodulin1, Calmodulin2, Calmodulin3は同一のアミノ酸配列のタンパク質をコードしている。

機能

カルモジュリンは脳内で10~100マイクロモル/リットルの濃度で発現しており、細胞内で上昇したCa2+と結合し、様々なカルモジュリン結合タンパク質と結合して生理機能を発揮する。カルモジュリン結合タンパク質の多くはCa2+依存的であり、Ca2+/カルモジュリンと結合するが、Ca2+と結合していないカルモジュリンと結合するタンパク質や、Ca2+非依存的に結合するタンパク質も存在する。カルモジュリンの主要な機能は、細胞内のCa2+濃度の変化を感知し、カルモジュリン結合タンパクの機能制御を通じて、細胞機能を制御することである。

カルモジュリン結合タンパク質としては、環状ヌクレオチド代謝酵素(フォスフォジエステラーゼ、アデニル酸シクラーゼ)、膜タンパク質(ATP依存的Ca2+ポンプ、代謝型グルタミン酸受容体、L型カルシウムチャネル、IP3 受容体)、リン酸化酵素(MLCK、Ca2+/CaM依存的キナーゼI/II/IV、ホスホリラーゼキナーゼ)、 脱リン酸化酵素(カルシニューリン)、 細胞骨格系タンパク質(カルデスモン、MAP2、アデューシン、カルスペクトリン、ミオシン)、シグナル伝達タンパク質(RasGRF1、一酸化窒素合成酵素)などが知られている。こうした様々なタンパク質と結合し、その活性や機能を制御することがカルモジュリンの機能である。

阻害剤

W-7[15] ナフタレンスルホンアミド誘導体。カルモジュリンの疎水性領域に結合する。

カルミダゾリウム (Van Belle, 1989)

カルモジュリンを用いたCa2+インディケーター

カルモジュリンがCa2+依存的にターゲットペプチドと相互作用することを用いて、様々なGenetically-encoded Ca2+ indicatorが開発されている。大まかには、2色の異なる色の蛍光タンパク質間の蛍光共鳴エネルギー移動を用いてその2色の蛍光強度の比をレシオメトリック測定することが可能なFRETセンサー(Cameleonなど)と[16][17]、円順列変異GFPを用いてその蛍光強度からCa2+濃度を測定する単色蛍光プローブ(G-CaMPなど)がある[18][19]。2010年前後から、GCaMPの改良が進んでおり、さまざまな色のインディケーターの開発や脳活動を神経細胞レベルで長期間観察するのに用いられている[20][21][22][23]

  1. S Kakiuchi, R Yamazaki
    Stimulation of the activity of cyclic 3',5'-nucleotide phosphodiesterase by calcium ion.
    Proc. Japan Acad. 46, 387-392:1970
  2. Kakiuchi, S., & Yamazaki, R. (1970).
    Calcium dependent phosphodiesterase activity and its activating factor (PAF) from brain studies on cyclic 3',5'-nucleotide phosphodiesterase (3). Biochemical and biophysical research communications, 41(5), 1104-10. [PubMed:4320714] [WorldCat] [DOI]
  3. Cheung, W.Y. (1970).
    Cyclic 3',5'-nucleotide phosphodiesterase. Demonstration of an activator. Biochemical and biophysical research communications, 38(3), 533-8. [PubMed:4315350] [WorldCat] [DOI]
  4. Teo, T.S., Wang, T.H., & Wang, J.H. (1973).
    Purification and properties of the protein activator of bovine heart cyclic adenosine 3',5'-monophosphate phosphodiesterase. The Journal of biological chemistry, 248(2), 588-95. [PubMed:4346337] [WorldCat]
  5. Teo, T.S., & Wang, J.H. (1973).
    Mechanism of activation of a cyclic adenosine 3':5'-monophosphate phosphodiesterase from bovine heart by calcium ions. Identification of the protein activator as a Ca2+ binding protein. The Journal of biological chemistry, 248(17), 5950-5. [PubMed:4353626] [WorldCat]
  6. Stevens, F.C., Walsh, M., Ho, H.C., Teo, T.S., & Wang, J.H. (1976).
    Comparison of calcium-binding proteins. Bovine heart and brain protein activators of cyclic nucleotide phosphodiesterase and rabbit skeletal muscle troponin C. The Journal of biological chemistry, 251(15), 4495-500. [PubMed:181374] [WorldCat]
  7. Watterson, D.M., Harrelson, W.G., Keller, P.M., Sharief, F., & Vanaman, T.C. (1976).
    Structural similarities between the Ca2+-dependent regulatory proteins of 3':5'-cyclic nucleotide phosphodiesterase and actomyosin ATPase. The Journal of biological chemistry, 251(15), 4501-13. [PubMed:181375] [WorldCat]
  8. Watterson, D.M., Sharief, F., & Vanaman, T.C. (1980).
    The complete amino acid sequence of the Ca2+-dependent modulator protein (calmodulin) of bovine brain. The Journal of biological chemistry, 255(3), 962-75. [PubMed:7356670] [WorldCat]
  9. Klee, C.B. (1977).
    Conformational transition accompanying the binding of Ca2+ to the protein activator of 3',5'-cyclic adenosine monophosphate phosphodiesterase. Biochemistry, 16(5), 1017-24. [PubMed:14663] [WorldCat] [DOI]
  10. Wolff, D.J., Poirier, P.G., Brostrom, C.O., & Brostrom, M.A. (1977).
    Divalent cation binding properties of bovine brain Ca2+-dependent regulator protein. The Journal of biological chemistry, 252(12), 4108-17. [PubMed:193856] [WorldCat]
  11. Dedman, J.R., Potter, J.D., Jackson, R.L., Johnson, J.D., & Means, A.R. (1977).
    Physicochemical properties of rat testis Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase. Relationship of Ca2+-binding, conformational changes, and phosphodiesterase activity. The Journal of biological chemistry, 252(23), 8415-22. [PubMed:200611] [WorldCat]
  12. "WY Cheung, Calcium and Cell Function: Volume 1"
  13. Cheung, W.Y., Lynch, T.J., & Wallace, R.W. (1978).
    An endogenous Ca2+-dependent activator protein of brain adenylate cyclase and cyclic neucleotide phosphodiesterase. Advances in cyclic nucleotide research, 9, 233-51. [PubMed:208377] [WorldCat]
  14. Babu, Y.S., Sack, J.S., Greenhough, T.J., Bugg, C.E., Means, A.R., & Cook, W.J. (1985).
    Three-dimensional structure of calmodulin. Nature, 315(6014), 37-40. [PubMed:3990807] [WorldCat] [DOI]
  15. Tanaka, T., & Hidaka, H. (1980).
    Hydrophobic regions function in calmodulin-enzyme(s) interactions. The Journal of biological chemistry, 255(23), 11078-80. [PubMed:6254958] [WorldCat]
  16. Romoser, V.A., Hinkle, P.M., & Persechini, A. (1997).
    Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. A new class of fluorescent indicators. The Journal of biological chemistry, 272(20), 13270-4. [PubMed:9148946] [WorldCat] [DOI]
  17. Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M., & Tsien, R.Y. (1997).
    Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature, 388(6645), 882-7. [PubMed:9278050] [WorldCat] [DOI]
  18. Nakai, J., Ohkura, M., & Imoto, K. (2001).
    A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nature biotechnology, 19(2), 137-41. [PubMed:11175727] [WorldCat] [DOI]
  19. Nagai, T., Sawano, A., Park, E.S., & Miyawaki, A. (2001).
    Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proceedings of the National Academy of Sciences of the United States of America, 98(6), 3197-202. [PubMed:11248055] [PMC] [WorldCat] [DOI]
  20. Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H., ..., & Looger, L.L. (2009).
    Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature methods, 6(12), 875-81. [PubMed:19898485] [PMC] [WorldCat] [DOI]
  21. Zhao, Y., Araki, S., Wu, J., Teramoto, T., Chang, Y.F., Nakano, M., ..., & Campbell, R.E. (2011).
    An expanded palette of genetically encoded Ca²⁺ indicators. Science (New York, N.Y.), 333(6051), 1888-91. [PubMed:21903779] [PMC] [WorldCat] [DOI]
  22. Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., ..., & Kim, D.S. (2013).
    Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499(7458), 295-300. [PubMed:23868258] [PMC] [WorldCat] [DOI]
  23. Inoue, M., Takeuchi, A., Horigane, S., Ohkura, M., Gengyo-Ando, K., Fujii, H., ..., & Bito, H. (2015).
    Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nature methods, 12(1), 64-70. [PubMed:25419959] [WorldCat] [DOI]