「カルモジュリン」の版間の差分

提供:脳科学辞典
ナビゲーションに移動 検索に移動
(3人の利用者による、間の64版が非表示)
1行目: 1行目:
<div align="right"> 
カルモジュリン 英:Calmodulin
<font size="+1">[http://researchmap.jp/hajimechan 藤井 哉]</font><br>
''東京大学医学系研究科神経生化学教室''<br>
DOI:<selfdoi /> 原稿受付日:2015年8月7日 原稿完成日:2015年9月30日<br>
担当編集委員:[http://researchmap.jp/wadancnp 和田 圭司](国立研究開発法人国立精神・神経医療研究センター)<br>
</div>


英:calmodulin
==要約==
カルモジュリンは148アミノ酸残基、分子量約16.7kDa、酸性の[[CA2|Ca2]]+結合タンパク質であり、それぞれ2つのEFハンドドメインからなるN末側ドメインとC末側ドメインがリンカーでつながったダンベル様構造をしている。カルモジュリンは、酵母、植物、昆虫から[[ヒト]]まで真核生物に発現しており、特に脊椎動物の中では高い保存性を示す。Ca2+と結合することで、下流のタンパク質に結合して活性などを調節し、Ca2+センサーとしてCa2+シグナル伝達の中でも非常に重要な役割を果たす。特に脳においては、神経発生、軸策突起進展、[[長期記憶]]など様々な機能に関わる。


{{box|text= カルモジュリンは148アミノ酸残基、分子量約16.7kDa、酸性の[[Ca2+|Ca<sup>2+</sup>]]+結合タンパク質であり、それぞれ2つのEFハンドドメインからなるN末側ドメインとC末側ドメインがリンカーでつながったダンベル様構造をしている。カルモジュリンは、酵母、植物、昆虫から[[ヒト]]まで真核生物に発現しており、特に脊椎動物の中では高い保存性を示す。Ca<sup>2+</sup>と結合することで、Ca<sup>2+</sup>バッファーとして働くほか、下流のタンパク質に結合して活性などを調節し、Ca<sup>2+</sup>センサーとしてCa<sup>2+</sup>シグナル伝達の中でも非常に重要な役割を果たす。特に脳においては、Ca<sup>2+</sup>シグナル伝達をコントロールする中心的な役割を担い、神経突起形成、軸索伸展、シナプス形成、シナプス可塑性、記憶・学習など様々な機能に関わる。}}
{{Pfam_box
| Symbol = efhand
| Name = カルモジュリン
| image = 3CLN.pdb
| width =
| caption = カルモジュリンEF-handの結晶構造<ref><pubmed>3145979</pubmed></ref>
| Pfam= PF00036
| PROSITE=PDOC00018
| InterPro= IPR002048
| SMART=
| SCOP = 1osa
| TCDB =
| OPM family=
| OPM protein= 1djx
| CDD = cd00051
}}
{{PBB|geneid=801}}{{PBB|geneid=805}}{{PBB|geneid=808}}
==発見==
==発見==
 1970年、Kakiuchiらは、[[ラット]][[脳]]抽出物中の[[環状ヌクレオチドフォスフォジエステラーゼ]]活性が[[Ca2+|Ca<sup>2+</sup>]]により制御されることを報告し<ref name=ref1>'''S Kakiuchi, R Yamazaki'''<br>Stimulation of the activity of cyclic 3',5'-nucleotide phosphodiesterase by [[calcium]] ion.<br>''Proc. Japan Acad. 46, 387-392'':1970</ref>、このCa<sup>2+</sup>依存性を担う調節因子を見出した<ref>'''S Kakiuchi, R Yamazaki, H Nakajima'''<br>Properties of a heat-stable phosphodiesterase activating factor isolated from brain extract<br>''Proc. Japan Acad. 46, 587-592'':1970</ref><ref><pubmed> 4320714 </pubmed></ref>。また、同じ1970年に独立してCheungは環状ヌクレオチドフォスフォジエステラーゼの活性が精製の過程で減弱することから、精製の過程で分離される分画より活性化因子を発見し報告した<ref><pubmed> 4315350</pubmed></ref>
1970年、Kakiuchiらは、ラット脳抽出物中の環状ヌクレオチドフォスフォジエステラーゼ活性がCa2+により制御されることを報告し<ref>'''S Kakiuchi, R Yamazaki'''<br>Stimulation of the activity of cyclic 3',5'-nucleotide phosphodiesterase by [[calcium]] ion.<br>''Proc. Japan Acad. 46, 387-392'':1970</ref>、このCa2+依存性を担う調節因子を見出した<ref>'''S Kakiuchi, R Yamazaki, H Nakajima'''<br>Properties of a heat-stable phosphodiesterase activating factor isolated from brain extract<br>''Proc. Japan Acad. 46, 587-592'':1970</ref><ref><pubmed> 4320714 </pubmed></ref>。また、同じ1970年に独立してCheungは環状ヌクレオチドフォスフォジエステラーゼの活性が精製の過程で減弱することから、精製の過程で分離される分画より活性化因子を発見し報告した<ref><pubmed> 4315350</pubmed></ref>。1973年にTeoとWangらはウシの心臓からこの活性化因子を精製し<ref><pubmed>4346337</pubmed></ref>、これらの別々に発見された因子の正体が同一のCa2+結合タンパク質であることを示した<ref><pubmed> 4353626 </pubmed></ref><ref>'''日高弘義、垣内史朗 編'''<br>カルモデュリン―Ca2+受容蛋白質<br>:1981</ref>。その後、トロポニンCに特性が類似したタンパク質であることが示され<ref><pubmed> 181374 </pubmed></ref> <ref><pubmed> 181375 </pubmed></ref>、アミノ酸配列が決定され<ref><pubmed> 7356670 </pubmed></ref>、分光学的解析によってCa2+結合に伴って構造が変化することが示された<ref><pubmed> 14663 </pubmed></ref> <ref><pubmed> 193856 </pubmed></ref> <ref><pubmed> 200611 </pubmed></ref>。その呼び名は研究グループによって、activator protein, modulator protein, Ca2+dependent regulator protein (CDR), Phosphodiesterase Activating Factor (PAF)などさまざまに呼ばれたが、1970年代末にCalmodulinという名称が付けられた<ref>"WY Cheung, Calcium and Cell Function: Volume 1"</ref><ref><pubmed> 208377 </pubmed></ref>。
 
 1973年にTeoとWangらは[[ウシ]]の心臓からこの活性化因子を精製し<ref><pubmed>4346337</pubmed></ref>、これらの別々に発見された因子の正体が同一のCa<sup>2+</sup>結合タンパク質であることを示した<ref><pubmed> 4353626 </pubmed></ref><ref>'''日高弘義、垣内史朗 編'''<br>カルモデュリン―Ca<sup>2+</sup>受容蛋白質<br>1981</ref>
 
 その後、[[トロポニンC]]に特性が類似したタンパク質であることが示され<ref><pubmed> 181374 </pubmed></ref> <ref><pubmed> 181375 </pubmed></ref>、アミノ酸配列が決定され<ref name=ref10><pubmed> 7356670 </pubmed></ref>、分光学的解析によってCa<sup>2+</sup>結合に伴って構造が変化することが示された<ref><pubmed> 14663 </pubmed></ref> <ref><pubmed> 193856 </pubmed></ref> <ref><pubmed> 200611 </pubmed></ref>。その呼び名は研究グループによって、activator protein, modulator protein, Ca<sup>2+</sup>dependent regulator protein(CDR)、Phosphodiesterase Activating Factor(PAF)などさまざまに呼ばれたが、1970年代末にcalmodulinという名称が付けられた<ref>'''WY Cheung ed.'''<br>Calcium and Cell Function: Volume 1 Calmodulin<br>1980 ''Academic Press'', New York, ISBN 1483204030</ref><ref><pubmed> 208377 </pubmed></ref>。


==構造==
==構造==
 カルモジュリンは148残基のアミノ酸からなる、分子量約16.7kDaのタンパク質である。1985年にCa<sup>2+</sup>存在下のウシ由来カルモジュリンの[[X線結晶構造]]が解かれ、原子レベルでの構造が明らかになった<ref name=ref16><pubmed> 3990807 </pubmed></ref>。Ca2+と結合する4つのヘリックス・ループ・ヘリックス構造の[[EFハンドモチーフ]]を持ち、2つずつがそれぞれペアとなって球状のN末側ドメイン、C末側ドメインを形成し、その間をリンカーがつながったダンベル様の構造をしている。それぞれの球状のドメインの大きさは約25×20×20 Åであり、分子全体としては長軸が約65 Åの長さである<ref name=ref16 />。
カルモジュリンは148残基のアミノ酸からなる、分子量約16.7kDaのタンパク質である。1985年にCa2+存在下のウシ由来カルモジュリンのX線結晶構造が解かれ、原子レベルでの構造が明らかになった<ref><pubmed> 3990807 </pubmed></ref>。Ca2+と結合する4つのヘリックス・ループ・ヘリックス構造のEFハンドモチーフを持ち、2つずつがそれぞれペアとなって球状のN末側ドメイン、C末側ドメインを形成し、その間をリンカーがつながったダンベル様の構造をしている。それぞれの球状のドメインの大きさは約25×20×20オングストロームであり、分子全体としては長軸が約65オングストロームの長さである<ref><pubmed> 3990807 </pubmed></ref>。
 
==サブファミリー==
 ヒトのCalmodulin1、Calmodulin2、Calmodulin3は同一のアミノ酸配列のタンパク質をコードしており、それぞれ[[染色体]]上の14q24-q31、2p21.1-p21.3、19q13.2-q13.3に位置する('''表1''')<ref><pubmed>8314583</pubmed></ref>。
 
{|class="wikitable"
|+表1. ヒトカルモジュリン遺伝子
!タンパク質名称
!NCBI遺伝子情報
!NCBI mRNA情報 (RefSeq)
!HUGO遺伝子命名法委員会 (HGNC)
!Allen mouse brain
|-
|Calmodulin1||[http://www.ncbi.nlm.nih.gov/gene/801 801]||[http://www.ncbi.nlm.nih.gov/nuccore/NM_006888 NM_006888]||[http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=HGNC:1442 CALM1]||[http://mouse.brain-map.org/gene/show/12098 12098]
|-
|Calmodulin2||[http://www.ncbi.nlm.nih.gov/gene/805 805]||[http://www.ncbi.nlm.nih.gov/nuccore/NM_001743 NM_001743]||[http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=HGNC:1445 CALM2]||[http://mouse.brain-map.org/gene/show/12099 12099]
|-
|Calmodulin3||[http://www.ncbi.nlm.nih.gov/gene/808 808]||[http://www.ncbi.nlm.nih.gov/nuccore/NM_005184 NM_005184]||[http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=HGNC:1449 CALM3]||[http://mouse.brain-map.org/gene/show/12100 12100]
|}
 
 その他、[[酵母]]、[[植物]]、[[昆虫]]からヒトまで[[真核生物]]に発現しており、特に[[脊椎動物]]の中では高い保存性を示す。


==機能==
==機能==
 カルモジュリンは脳内で10~100 &micro;mol/lの濃度で発現しており<ref><pubmed> 15803158 </pubmed></ref>、細胞内で上昇したCa<sup>2+</sup>と結合し、Ca<sup>2+</sup>バッファーとして働くのに加え、様々なカルモジュリン結合タンパク質と結合して生理機能を発揮する('''表2''')。
カルモジュリンは脳内で10~100マイクロモル/リットルの濃度で発現しており<ref><pubmed> 15803158 </pubmed></ref>、細胞内で上昇したCa2+と結合し、様々なカルモジュリン結合タンパク質と結合して生理機能を発揮する。カルモジュリンの主要な機能は、細胞内のCa2+濃度の変化を感知し、カルモジュリン結合タンパクの機能制御を通じて、細胞機能を制御(活性化、抑制)することであり、その具体的な効果はターゲットとなる下流のタンパク質によって様々に異なる。カルモジュリン結合タンパク質の多くはCa2+依存性がありCa2+/カルモジュリンと結合するが、Ca2+と結合していないカルモジュリンと結合するタンパク質や、Ca2+非依存的に結合するタンパク質も存在する。Ca2+に対する親和性の違いから、C末側ドメインはN末側ドメインに比べCa2+に対する親和性が高く、in vitroでトリプシン処理により得られたN末側/C末側ドメインのCa2+親和性をpH7.5, 100mM KCl, 25℃の条件下で測定した場合には、それぞれ1.5~100μM、0.4~10μMである<ref><pubmed> 1902469</pubmed></ref>。Ca2+依存的な結合の場合、カルモジュリンがCa2+と結合することで、疎水性領域が露出し、ターゲットとなるタンパク質のカルモジュリン結合ドメインにある疎水性のアミノ酸残基と相互作用する。この疎水性アミノ酸残基の位置によって、1-14モチーフ(MLCK、カルシニューリン、CaMKIV、NOS)、1-10モチーフ(CaMKII、シナプシン、ヒートショックプロテイン)、1-16モチーフ(CaMKK)などに分類される<ref><pubmed> 9141499</pubmed></ref><ref><pubmed>23601118 </pubmed></ref><ref><pubmed> 25998729 </pubmed></ref>。また、Ca2+非依存的な結合タンパク質は、IQモチーフ(IQXXXRGXXXR)を持つことが多い。


=== エフェクタータンパク質 ===
 カルモジュリンの主要な機能は、細胞内のCa<sup>2+</sup>濃度の変化を感知し、カルモジュリン結合タンパク質の機能制御を通じて、細胞機能を制御(活性化、抑制)することであり、その具体的な効果はターゲットとなる下流のタンパク質によって様々に異なる。多くはCa<sup>2+</sup>依存性がありCa<sup>2+</sup>/カルモジュリンと結合するが、Ca<sup>2+</sup>と結合していないカルモジュリンと結合するタンパク質や、Ca<sup>2+</sup>非依存的に結合するタンパク質も存在する。


 Ca<sup>2+</sup>に対する親和性の違いから、C末側ドメインはN末側ドメインに比べCa<sup>2+</sup>に対する親和性が高く、in vitroでトリプシン処理により得られたN末側/C末側ドメインのCa<sup>2+</sup>親和性をpH 7.5, 100 mM KCl, 25 ℃の条件下で測定した場合には、それぞれ1.5~100 μM、0.4~10 μMである<ref><pubmed> 1902469</pubmed></ref>。Ca<sup>2+</sup>依存的な結合の場合、カルモジュリンがCa<sup>2+</sup>と結合することで、疎水性領域が露出し、ターゲットとなるタンパク質のカルモジュリン結合ドメインにある疎水性のアミノ酸残基と相互作用する。この疎水性アミノ酸残基の位置によって、幾つかのもシーフに分類される<ref><pubmed> 9141499</pubmed></ref><ref><pubmed>23601118 </pubmed></ref><ref><pubmed> 25998729 </pubmed></ref>
カルモジュリン結合タンパク質としては、環状ヌクレオチド代謝酵素(フォスフォジエステラーゼ<ref>'''S Kakiuchi, R Yamazaki'''<br>Stimulation of the activity of cyclic 3',5'-nucleotide phosphodiesterase by [[calcium]] ion.<br>''Proc. Japan Acad. 46, 387-392'':1970</ref><ref><pubmed> 4315350</pubmed></ref>、アデニル酸シクラーゼ<ref><pubmed>284333 </pubmed></ref><ref><pubmed>2472670 </pubmed></ref><ref><pubmed>1719547 </pubmed></ref>)、膜タンパク質(Plasma membrane Ca2+-ATPase(PMCA)<ref><pubmed> 197955 </pubmed></ref><ref><pubmed> 197956 </pubmed></ref><ref><pubmed>2154244 </pubmed></ref>、NMDA型グルタミン酸受容体<ref><pubmed>8625412 </pubmed></ref>、代謝型[[グルタミン酸]]受容体<ref><pubmed> 9242710 </pubmed></ref><ref><pubmed>10488094 </pubmed></ref>、[[L型カルシウムチャネル]]<ref><pubmed>10197534 </pubmed></ref><ref><pubmed>10335846 </pubmed></ref>、P/Q型カルシウムチャネル<ref><pubmed>10335845 </pubmed></ref>、IP3 受容体<ref><pubmed> 1845986</pubmed></ref>)、リン酸化酵素(ミオシン軽鎖キナーゼ(MLCK)<ref><pubmed> 6896283 </pubmed></ref><ref><pubmed> 3858814 </pubmed></ref><ref><pubmed> 3754463 </pubmed></ref><ref><pubmed> 3800388 </pubmed></ref>、Ca2+/CaM依存的キナーゼI<ref><pubmed> 6785753</pubmed></ref>/II<ref><pubmed>  628428</pubmed></ref><ref><pubmed> 7409141</pubmed></ref>/IV<ref><pubmed>2538431</pubmed></ref>、CaMキナーゼキナーゼ<ref><pubmed>7961813 </pubmed></ref><ref><pubmed>7641687 </pubmed></ref>、ホスホリラーゼキナーゼ<ref><pubmed>212300 </pubmed></ref>)、 脱リン酸化酵素([[カルシニューリン]])<ref><pubmed> 193860 </pubmed></ref><ref><pubmed> 201280 </pubmed></ref>、 [[細胞骨格]]系タンパク質(MAP2<ref><pubmed> 6420403</pubmed></ref>、タウ<ref><pubmed> 6420403</pubmed></ref>、アデューシン<ref><pubmed>3511042 </pubmed></ref>、ミオシン)、[[一酸化窒素]]合成酵素<ref><pubmed> 1689048 </pubmed></ref><ref><pubmed>2370855 </pubmed></ref>などが知られている。こうした様々なタンパク質と結合し、その活性や機能を制御することがカルモジュリンの機能である。


* 1-14モチーフ:([[ミオシン軽鎖キナーゼ]]([[myosin light-chain kinase]], [[MLCK]])、[[カルシニューリン]]、[[Ca2+/カルモジュリン依存性タンパク質キナーゼIV|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼIV]]([[CaMKIV]])、[[一酸化窒素合成酵素]]([[NOS]]))
==サブファミリー==
* 1-10モチーフ:([[Ca2+/カルモジュリン依存性タンパク質キナーゼII|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼII]]([[CaMKII]])、[[シナプシン]]、[[熱ショックタンパク質]]70/90)
Calmodulin1 [http://www.ncbi.nlm.nih.gov/gene/801 Gene], [http://www.ncbi.nlm.nih.gov/nuccore/NM_006888 RefSeq], [http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=HGNC:1442 HGNC], [http://mouse.brain-map.org/gene/show/12098 Allen mouse brain]
* 1-16モチーフ:([[Ca2+/カルモジュリン依存性タンパク質キナーゼキナーゼ|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼキナーゼ]], [[CaMKK]])
* IQモチーフ:Ca<sup>2+</sup>非依存的な結合タンパク質に多い。コンセンサス配列はIQXXXRGXXXRである。
 
 また、カルモジュリンは[[リン酸化]]<ref><pubmed>6621532</pubmed></ref>や[[糖化]]<ref><pubmed>2541779</pubmed></ref>、[[メチル化]]<ref name=ref10 />など[[翻訳後修飾]]を受け、機能を調節することが知られている<ref><pubmed>1314563</pubmed></ref><ref><pubmed>9572870</pubmed></ref>。
 
{|class="wikitable"
|+表2. カルモジュリン結合タンパク質
!colspan="2"|タンパク質名称
!参考文献
|-
|rowspan="2" |[[環状ヌクレオチド]]代謝酵素||[[ホスホジエステラーゼ]]||<ref name=ref1 />
|-
|[[アデニル酸シクラーゼ]]||<ref><pubmed>284333 </pubmed></ref><ref><pubmed>2472670 </pubmed></ref><ref><pubmed>1719547 </pubmed></ref>
|-
|rowspan="6" |[[膜タンパク質]]||[[細胞膜カルシウムATPアーゼ]] ([[plasma membrane Ca2+-ATPase|plasma membrane Ca<sup>2+</sup>-ATPase]]; [[PMCA]])||<ref><pubmed> 197955 </pubmed></ref><ref><pubmed> 197956 </pubmed></ref><ref><pubmed>2154244 </pubmed></ref>
|-
|[[NMDA型グルタミン酸受容体]]||<ref><pubmed>8625412 </pubmed></ref>
|-
|[[代謝活性型グルタミン酸受容体]]||<ref><pubmed> 9242710 </pubmed></ref><ref><pubmed>10488094 </pubmed></ref>
|-
|[[L型カルシウムチャネル]]||<ref><pubmed>10197534 </pubmed></ref><ref><pubmed>10335846 </pubmed></ref>
|-
|[[P/Q型カルシウムチャネル]]||<ref><pubmed>10335845 </pubmed></ref>
|-
|[[IP3受容体|IP<sub>3</sub>受容体]]||<ref><pubmed> 1845986</pubmed></ref>)
|-
|rowspan="6" |[[リン酸化酵素]]||[[ミオシン軽鎖キナーゼ]] ([[MLCK]])||<ref><pubmed> 6896283 </pubmed></ref><ref><pubmed> 3858814 </pubmed></ref><ref><pubmed> 3754463 </pubmed></ref><ref><pubmed> 3800388 </pubmed></ref>
|-
|[[Ca2+/カルモジュリン依存性タンパク質キナーゼI|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼI]] ([[CaMKI]])||<ref><pubmed> 6785753</pubmed></ref>
|-
|[[Ca2+/カルモジュリン依存性タンパク質キナーゼII|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼII]] ([[CaMKII]])||<ref><pubmed>  628428</pubmed></ref><ref><pubmed> 7409141</pubmed></ref>
|-
|[[Ca2+/カルモジュリン依存性タンパク質キナーゼIV|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼIV]] ([[CaMKIV]])||<ref><pubmed>2538431</pubmed></ref>
|-
|[[Ca2+/カルモジュリン依存性タンパク質キナーゼキナーゼ|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼキナーゼ]] ([[CaMKK]])||<ref><pubmed>7961813 </pubmed></ref><ref><pubmed>7641687 </pubmed></ref>
|-
|[[ホスホリラーゼキナーゼ]]||<ref><pubmed>212300 </pubmed></ref>)
|-
|[[脱リン酸化酵素]]||[[カルシニューリン]]||<ref><pubmed> 193860 </pubmed></ref><ref><pubmed> 201280 </pubmed></ref>
|-
|rowspan="4"|[[細胞骨格]]系タンパク質||[[MAP2]]||<ref name=ref48><pubmed> 6420403</pubmed></ref>
|-
|[[タウ]]||<ref name=ref48 />
|-
|[[アデューシン]]||<ref><pubmed>3511042 </pubmed></ref>
|-
|[[ミオシン]]||<ref><pubmed> 574874</pubmed></ref><ref><pubmed> 2460467</pubmed></ref><ref><pubmed> 2687288</pubmed></ref><ref><pubmed> 2525564</pubmed></ref>
|-
|colspan="2"|[[一酸化窒素合成酵素]]||<ref><pubmed> 1689048 </pubmed></ref><ref><pubmed>2370855 </pubmed></ref>
|-
|colspan="2"|[[熱ショックタンパク質70]]/[[熱ショックタンパク質90|90]]||<ref><pubmed> 3782106 </pubmed></ref><ref><pubmed>2154682 </pubmed></ref>
|}
 
===神経系での機能===
==== 神経回路の発達 ====
 [[神経突起]]形成<ref><pubmed> 12873385 </pubmed></ref><ref><pubmed>17553424  </pubmed></ref>、[[軸索]]伸展<ref><pubmed>15363394 </pubmed></ref><ref><pubmed>19864584 </pubmed></ref><ref><pubmed>24849351  </pubmed></ref>、シナプスの形成<ref><pubmed> 18184567 </pubmed></ref>などを通して、神経回路の発達に関わる。


 例えば、発生期に神経細胞が軸索を伸展し標的となる細胞に投射して神経回路を構築する際には、軸索の先端部は[[成長円錐]]を形成し、細胞外の[[軸索ガイダンス分子]]などのシグナルに応じて誘引されたり反発されたりすることで、その伸展する方向を制御している。[[アフリカツメガエル]]の[[脊髄]]神経細胞や[[ニワトリ]]の[[後根神経節]]細胞を用いた実験などから、ガイダンス分子として[[ネトリン1]]<ref><pubmed>  10638760 </pubmed></ref><ref><pubmed>  15758951  </pubmed></ref>や[[SEMA3A]]<ref><pubmed>  18549782 </pubmed></ref><ref><pubmed>  18536712 </pubmed></ref>をはじめさまざま知られており、これらは受容体を介して局所的なCa<sup>2+</sup>上昇を引き起こし、その濃度や局在によってカルモジュリンは異なるターゲットを活性化し、成長円錐の誘引や反発をコントロールしている。
Calmodulin2 [http://www.ncbi.nlm.nih.gov/gene/805 Gene], [http://www.ncbi.nlm.nih.gov/nuccore/NM_001743 RefSeq], [http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=HGNC:1445 HGNC], [http://mouse.brain-map.org/gene/show/12099 Allen mouse brain]


==== シナプス可塑性、記憶・学習 ====
Calmodulin3 [http://www.ncbi.nlm.nih.gov/gene/808 Gene], [http://www.ncbi.nlm.nih.gov/nuccore/NM_001743 RefSeq], [http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=1449 HGNC], [http://mouse.brain-map.org/gene/show/12100 Allen mouse brain]
 脳機能において、カルモジュリンは、そのターゲットとなるCaMKII、カルシニューリン、アデニル酸シクラーゼなどの下流のエフェクター酵素の制御を通しての[[シナプス可塑性]][[記憶]]・[[学習]]の制御に関して不可欠な役割を果たしている。


 海馬CA1領域における[[長期増強]]や[[長期抑圧]]は[[NMDA型グルタミン酸受容体]]の活性化によりCa<sup>2+</sup>が流入し、カルモジュリンと結合することで下流の酵素を活性化して引き起こされる。中でも、カルモジュリンの脳内での主要なターゲットのひとつであるCaMKIIは、Ca<sup>2+</sup>濃度の低い基底状態ではカルモジュリン結合ドメインとオーバーラップしている自己抑制ドメインによってそのキナーゼ活性が低く抑えられているが、Ca<sup>2+</sup>上昇に伴ってCa<sup>2+</sup>/カルモジュリンと結合し、コンフォメーションが変化することでこの自己抑制がはずれ、活性化する<ref><pubmed>12045104 </pubmed></ref>。また、CaMKIIは12量体を作っており<ref><pubmed>6315430  </pubmed></ref><ref><pubmed>21884935 </pubmed></ref>、活性化に伴って隣接するキナーゼサブユニットの間で286番目の[[スレオニン]]が[[リン酸化]]することで、Ca<sup>2+</sup>/カルモジュリンとの親和性が高くなるとともに<ref><pubmed>1317063  </pubmed></ref>、Ca<sup>2+</sup>/カルモジュリンが解離した後も部分的な活性を持続する"Autonomous"な状態を保持することができる<ref><pubmed>3006921  </pubmed></ref><ref><pubmed>3467320  </pubmed></ref>。CaMKIIは海馬の[[シェーファー側枝]]から[[CA1]][[錐体細胞]]への長期増強に関わることがが報告されており<ref><pubmed> 2847049</pubmed></ref><ref><pubmed>2549423 </pubmed></ref><ref><pubmed>1378648 </pubmed></ref>、CaMKIIαの[[ノックアウトマウス]]や[[点変異]]導入マウスでは海馬依存的な[[空間学習]]に異常がみられる<ref><pubmed> 1321493</pubmed></ref><ref><pubmed>9452388 </pubmed></ref>。
ヒトのCalmodulin1, Calmodulin2, Calmodulin3は同一のアミノ酸配列のタンパク質をコードしており、それぞれ染色体上の14q24-q31、2p21.1-p21.3、19q13.2-q13.3に位置する<ref><pubmed>8314583</pubmed></ref>。
 
 同様にカルモジュリンによって活性化される[[アデニル酸シクラーゼ1]]、[[アデニル酸シクラーゼ8|8]]やカルシニューリンもシナプス可塑性や記憶・学習に関与することが薬理学的実験や[[遺伝子改変動物]]実験などによって報告されている<ref><pubmed> 7515479 </pubmed></ref><ref><pubmed>10200317 </pubmed></ref><ref><pubmed>10482244</pubmed></ref><ref><pubmed>11733061 </pubmed></ref>。


 こうした電気生理学的・行動学的な変化を引き起こす分子・細胞生物学的なプロセスとして、カルモジュリンはCa<sup>2+</sup>流入に伴う[[スパイン]]の[[構造的可塑性]]の誘導<ref><pubmed>15190253 </pubmed></ref><ref><pubmed>15572107</pubmed></ref><ref><pubmed>23269840</pubmed></ref>や[[アクチン]][[細胞骨格]]の再構築<ref><pubmed>18341992</pubmed></ref><ref><pubmed>17404223</pubmed></ref>、種々の酵素の活性化<ref><pubmed> 26139370 </pubmed></ref><ref><pubmed> 19295602</pubmed></ref><ref><pubmed> 23602566 </pubmed></ref>や[[CREB]]を介した新規遺伝子発現<ref><pubmed>  8980227</pubmed></ref><ref><pubmed>19116276</pubmed></ref><ref><pubmed> 25277455 </pubmed></ref>に関わることが示されている。また、数あるカルモジュリン依存的な酵素の活性化は均等に起こるのではなく、Ca<sup>2+</sup>流入に伴うカルモジュリン依存的な酵素の活性化は均等に起こるのではなく、神経入力のパターンに応じて上昇したCa<sup>2+</sup>の時間的・空間的拡がりに応じて異なる強弱で活性化され、状況に応じて適切な神経細胞機能を発現していると考えられている<ref><pubmed> 12154335 </pubmed></ref><ref><pubmed> 23602566 </pubmed></ref>。
==阻害剤==
==阻害剤==
 1974年にWeissらが、カルモジュリンにより活性化される脳のホスホジエステラーゼに対する[[フェノチアジン]]誘導体の阻害効果の作用機序およびキネティクスを報告し、[[カルモジュリン阻害剤]]であることを示した<ref>'''B Weiss, R. Fertel, R Figlin, and P Uzunov'''<br>Selective alteration of the activity of the multiple forms of adenosine 3', 5'-monophosphate phosphodiesterase of rat cerebrum<br>''Mol. Pharmacol. 10, 615-625'':1974</ref>(これに先立つ1968年、Hondaらはフェノチアジン誘導体の環状ヌクレオチドホスホジエステラーゼに対する阻害効果が脳由来の酵素と心臓由来の酵素で異なることを報告している<ref><pubmed>4298921</pubmed></ref>)。この後、[[W-7]]<ref><pubmed>6254958 </pubmed></ref>や[[カルミダゾリウム]]<ref>'''H Van Belle'''<br>R 24 571: A potent inhibitor of calmodulin-activated enzymes.<br>''Cell Calcium 2, 483-494'':1981</ref>など、さまざまな物質がカルモジュリン阻害剤として働くことが見出されている<ref><pubmed>17400264 </pubmed></ref><ref><pubmed>25536331 </pubmed></ref>。
1968年、Hondaらはフェノチアジン誘導体の環状ヌクレオチドホスホジエステラーゼに対する阻害効果が脳由来の酵素と心臓由来の酵素で異なることを報告し、これがカルモジュリン阻害剤研究の先駆的な研究となった<ref><pubmed>4298921</pubmed></ref>。その後、!974年にWeissらが、カルモジュリンにより活性化される脳のホスホジエステラーゼに対するフェノチアジン誘導体の阻害効果の作用機序およびキネティクスを報告している<ref>'''B Weiss, R. Fertel, R Figlin, and P Uzunov'''<br>Selective Alteration of the Activity of the Multiple Forms of Adenosine 3', 5'-Monophosphate Phosphodiesterase of Rat Cerebrum<br>''Mol. Pharmacol. 10, 615-625'':1981</ref>。この後、さまざまな物質がカルモジュリン阻害剤として働くことが見出されている<ref><pubmed>17400264 </pubmed></ref><ref><pubmed>25536331 </pubmed></ref>
W-7<ref><pubmed>6254958 </pubmed></ref> ナフタレンスルホンアミド誘導体。カルモジュリンの疎水性領域に結合する。
カルミダゾリウム<ref>'''H Van Belle'''<br>R 24 571: A potent inhibitor of calmodulin-activated enzymes.<br>''Cell Calcium 2, 483-494'':1981</ref>


==疾患と関連するカルモジュリンの変異==
==疾患と関連するカルモジュリンの変異==
 カルモジュリンの点突然変異が、[[カテコールアミン誘発性多形性心室性頻拍]]、[[QT延長症候群]]、特発性[[心室細動]]で見出されている('''表3''')。
 
{|class="wikitable"
カテコールアミン誘発性多形性心室性頻拍(CPVT):CALM1(N53I<ref><pubmed>23040497</pubmed></ref>, N97S<ref><pubmed>23040497</pubmed></ref>
|+表3. 疾患と関連するカルモジュリンの変異
QT延長症候群(LQTS):CALM1(D129G<ref><pubmed>23388215</pubmed></ref>, F141L<ref><pubmed>23388215</pubmed></ref>)CALM2(D95V<ref><pubmed>24917665</pubmed></ref>, N97S<ref><pubmed>24917665</pubmed></ref>, N97I<ref><pubmed>23388215</pubmed></ref>, D133H<ref><pubmed>24917665</pubmed></ref>), CLAM3(D129G) <ref><pubmed>25460178</pubmed></ref>
!疾患名
CPVT・LQTS: D131E<ref><pubmed>24917665</pubmed></ref>, Q135P<ref><pubmed>24917665</pubmed></ref>
!遺伝子名
<ref><pubmed>24917665</pubmed></ref>
!変異
特発性心室細動(IVF):CALM1(F89L) <ref><pubmed>24076290</pubmed></ref>
!文献
|-
|rowspan=2|[[カテコールアミン誘発性多形性心室性頻拍]] (CPVT)||rowspan=2|CALM1||N53I||<ref name=ref67><pubmed>23040497</pubmed></ref>
|-
|N97S||<ref name=ref67 />
|-
|rowspan=7|[[QT延長症候群]] (LQTS)||rowspan=2|CALM1||D129G||<ref name=ref68><pubmed>23388215</pubmed></ref>
|-
|F141L||<ref name=ref68 />
|-
|rowspan=4|CALM2||D95V||<ref name=ref69><pubmed>24917665</pubmed></ref>
|-
|N97S||<ref name=ref69></ref>
|-
|N97I||<ref name=ref68 />
|-
|D133H||<ref name=ref69></ref>
|-
|CLAM3||D129G||<ref><pubmed>25460178</pubmed></ref>
|-
|rowspan=2|CPVT・LQTSの合併||rowspan=2|CALM2||D131E||<ref name=ref69></ref>
|-
|Q135P||<ref name=ref69></ref>
|-
|特発性[[心室細動]](IVF)||CALM1||F89L|| <ref><pubmed>24076290</pubmed></ref>
|}
 また、癌ゲノム解析により、多数の体細胞変異が見つかっているが、その機能については良く分かっていない<ref>[http://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=CALM1#muts CALM1 COSMIC database]</ref><ref>[http://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=CALM2#muts CALM2 COSMIC database]</ref><ref>
[http://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=CALM3#muts CALM3 COSMIC database]</ref>


==カルモジュリンを用いたCa<sup>2+</sup>インディケーター==
==カルモジュリンを用いたCa<sup>2+</sup>インディケーター==
 カルモジュリンがCa<sup>2+</sup>依存的にターゲットペプチドと相互作用することを用いて、様々な[[Genetically-encoded Ca2+ indicator|Genetically-encoded Ca<sup>2+</sup> indicator]]が開発されている。大まかには、2色の異なる色の[[蛍光タンパク質]]間の[[蛍光共鳴エネルギー移動]]を用いてその2色の蛍光強度の比をレシオメトリック測定することが可能な[[FRET]]センサー([[Cameleon]]など)と<ref><pubmed> 9148946 </pubmed></ref><ref><pubmed> 9278050 </pubmed></ref>、[[円順列変異]][[GFP]]を用いてその蛍光強度からCa<sup>2+</sup>濃度を測定する緑色蛍光プローブ([[G-CaMP]]など)がある<ref><pubmed> 11175727 </pubmed></ref><ref><pubmed> 11248055 </pubmed></ref>。[[Cameleon]]の場合、Ca<sup>2+</sup>と結合したカルモジュリンがそのターゲットのM13ペプチドと結合することでコンフォメーションが変化し、2色の蛍光タンパク質の間での[[蛍光共鳴エネルギー移動]]の効率が変わることを利用している。一方で、[[G-CaMP]]の場合には、カルモジュリンとM13ペプチドの結合によるコンフォメーション変化が発色団周囲の環境を変化させることにより、蛍光強度が変化することを利用している。
カルモジュリンがCa2+依存的にターゲットペプチドと相互作用することを用いて、様々なGenetically-encoded Ca2+ indicatorが開発されている。大まかには、2色の異なる色の蛍光タンパク質間の蛍光共鳴エネルギー移動を用いてその2色の蛍光強度の比をレシオメトリック測定することが可能なFRETセンサー(Cameleonなど)と<ref><pubmed> 9148946 </pubmed></ref><ref><pubmed> 9278050 </pubmed></ref>、円順列変異[[GFP]]を用いてその蛍光強度からCa2+濃度を測定する単色蛍光プローブ(G-CaMPなど)がある<ref><pubmed> 11175727 </pubmed></ref><ref><pubmed> 11248055 </pubmed></ref>。2010年前後から、GCaMPの改良が進んでおり、さまざまな色のインディケーターの開発や脳活動を神経細胞レベルで長期間観察するのに用いられている<ref><pubmed>19898485 </pubmed></ref><ref><pubmed>21903779 </pubmed></ref><ref><pubmed>23868258 </pubmed></ref><ref><pubmed>25419959</pubmed></ref>。
 
 2000年代以降、これらの改良が進んでおり、変化率を大きくしたものや単一活動電位を記録できる高感度のもの、キネティクスが速いもの、さまざまな色のインディケーターなどが開発され、生きた動物個体の中での神経細胞やシナプスの活動を長期間観察するのに用いられている<ref><pubmed>15247428 </pubmed></ref><ref><pubmed>16720273 </pubmed></ref><ref><pubmed>19160514 </pubmed></ref><ref><pubmed>19160515 </pubmed></ref><ref><pubmed>19898485 </pubmed></ref><ref><pubmed>21903779 </pubmed></ref><ref><pubmed>23868258 </pubmed></ref><ref><pubmed>24390440 </pubmed></ref><ref><pubmed>25419959</pubmed></ref><ref><pubmed>25678659</pubmed></ref>。


==関連項目==
* [[Ca2+/カルモジュリン依存性タンパク質キナーゼ|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼ]]
* [[Ca2+/カルモジュリン依存性タンパク質キナーゼI|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼI]] ([[CaMKI]])
* [[Ca2+/カルモジュリン依存性タンパク質キナーゼII|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼII]] ([[CaMKII]])
* [[Ca2+/カルモジュリン依存性タンパク質キナーゼIV|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼIV]] ([[CaMKIV]])
* [[Ca2+/カルモジュリン依存性タンパク質キナーゼキナーゼ|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼキナーゼ]] ([[CaMKK]])
* [[カルシニューリン]]


==参考文献==
<references/>
<references/>

2015年7月24日 (金) 21:05時点における版

カルモジュリン 英:Calmodulin

要約

カルモジュリンは148アミノ酸残基、分子量約16.7kDa、酸性のCa2+結合タンパク質であり、それぞれ2つのEFハンドドメインからなるN末側ドメインとC末側ドメインがリンカーでつながったダンベル様構造をしている。カルモジュリンは、酵母、植物、昆虫からヒトまで真核生物に発現しており、特に脊椎動物の中では高い保存性を示す。Ca2+と結合することで、下流のタンパク質に結合して活性などを調節し、Ca2+センサーとしてCa2+シグナル伝達の中でも非常に重要な役割を果たす。特に脳においては、神経発生、軸策突起進展、長期記憶など様々な機能に関わる。

発見

1970年、Kakiuchiらは、ラット脳抽出物中の環状ヌクレオチドフォスフォジエステラーゼ活性がCa2+により制御されることを報告し[1]、このCa2+依存性を担う調節因子を見出した[2][3]。また、同じ1970年に独立してCheungは環状ヌクレオチドフォスフォジエステラーゼの活性が精製の過程で減弱することから、精製の過程で分離される分画より活性化因子を発見し報告した[4]。1973年にTeoとWangらはウシの心臓からこの活性化因子を精製し[5]、これらの別々に発見された因子の正体が同一のCa2+結合タンパク質であることを示した[6][7]。その後、トロポニンCに特性が類似したタンパク質であることが示され[8] [9]、アミノ酸配列が決定され[10]、分光学的解析によってCa2+結合に伴って構造が変化することが示された[11] [12] [13]。その呼び名は研究グループによって、activator protein, modulator protein, Ca2+dependent regulator protein (CDR), Phosphodiesterase Activating Factor (PAF)などさまざまに呼ばれたが、1970年代末にCalmodulinという名称が付けられた[14][15]

構造

カルモジュリンは148残基のアミノ酸からなる、分子量約16.7kDaのタンパク質である。1985年にCa2+存在下のウシ由来カルモジュリンのX線結晶構造が解かれ、原子レベルでの構造が明らかになった[16]。Ca2+と結合する4つのヘリックス・ループ・ヘリックス構造のEFハンドモチーフを持ち、2つずつがそれぞれペアとなって球状のN末側ドメイン、C末側ドメインを形成し、その間をリンカーがつながったダンベル様の構造をしている。それぞれの球状のドメインの大きさは約25×20×20オングストロームであり、分子全体としては長軸が約65オングストロームの長さである[17]

機能

カルモジュリンは脳内で10~100マイクロモル/リットルの濃度で発現しており[18]、細胞内で上昇したCa2+と結合し、様々なカルモジュリン結合タンパク質と結合して生理機能を発揮する。カルモジュリンの主要な機能は、細胞内のCa2+濃度の変化を感知し、カルモジュリン結合タンパクの機能制御を通じて、細胞機能を制御(活性化、抑制)することであり、その具体的な効果はターゲットとなる下流のタンパク質によって様々に異なる。カルモジュリン結合タンパク質の多くはCa2+依存性がありCa2+/カルモジュリンと結合するが、Ca2+と結合していないカルモジュリンと結合するタンパク質や、Ca2+非依存的に結合するタンパク質も存在する。Ca2+に対する親和性の違いから、C末側ドメインはN末側ドメインに比べCa2+に対する親和性が高く、in vitroでトリプシン処理により得られたN末側/C末側ドメインのCa2+親和性をpH7.5, 100mM KCl, 25℃の条件下で測定した場合には、それぞれ1.5~100μM、0.4~10μMである[19]。Ca2+依存的な結合の場合、カルモジュリンがCa2+と結合することで、疎水性領域が露出し、ターゲットとなるタンパク質のカルモジュリン結合ドメインにある疎水性のアミノ酸残基と相互作用する。この疎水性アミノ酸残基の位置によって、1-14モチーフ(MLCK、カルシニューリン、CaMKIV、NOS)、1-10モチーフ(CaMKII、シナプシン、ヒートショックプロテイン)、1-16モチーフ(CaMKK)などに分類される[20][21][22]。また、Ca2+非依存的な結合タンパク質は、IQモチーフ(IQXXXRGXXXR)を持つことが多い。


カルモジュリン結合タンパク質としては、環状ヌクレオチド代謝酵素(フォスフォジエステラーゼ[23][24]、アデニル酸シクラーゼ[25][26][27])、膜タンパク質(Plasma membrane Ca2+-ATPase(PMCA)[28][29][30]、NMDA型グルタミン酸受容体[31]、代謝型グルタミン酸受容体[32][33]L型カルシウムチャネル[34][35]、P/Q型カルシウムチャネル[36]、IP3 受容体[37])、リン酸化酵素(ミオシン軽鎖キナーゼ(MLCK)[38][39][40][41]、Ca2+/CaM依存的キナーゼI[42]/II[43][44]/IV[45]、CaMキナーゼキナーゼ[46][47]、ホスホリラーゼキナーゼ[48])、 脱リン酸化酵素(カルシニューリン[49][50]細胞骨格系タンパク質(MAP2[51]、タウ[52]、アデューシン[53]、ミオシン)、一酸化窒素合成酵素[54][55]などが知られている。こうした様々なタンパク質と結合し、その活性や機能を制御することがカルモジュリンの機能である。

サブファミリー

Calmodulin1 Gene, RefSeq, HGNC, Allen mouse brain

Calmodulin2 Gene, RefSeq, HGNC, Allen mouse brain

Calmodulin3 Gene, RefSeq, HGNC, Allen mouse brain

ヒトのCalmodulin1, Calmodulin2, Calmodulin3は同一のアミノ酸配列のタンパク質をコードしており、それぞれ染色体上の14q24-q31、2p21.1-p21.3、19q13.2-q13.3に位置する[56]

阻害剤

1968年、Hondaらはフェノチアジン誘導体の環状ヌクレオチドホスホジエステラーゼに対する阻害効果が脳由来の酵素と心臓由来の酵素で異なることを報告し、これがカルモジュリン阻害剤研究の先駆的な研究となった[57]。その後、!974年にWeissらが、カルモジュリンにより活性化される脳のホスホジエステラーゼに対するフェノチアジン誘導体の阻害効果の作用機序およびキネティクスを報告している[58]。この後、さまざまな物質がカルモジュリン阻害剤として働くことが見出されている[59][60]。 W-7[61] ナフタレンスルホンアミド誘導体。カルモジュリンの疎水性領域に結合する。 カルミダゾリウム[62]

疾患と関連するカルモジュリンの変異

カテコールアミン誘発性多形性心室性頻拍(CPVT):CALM1(N53I[63], N97S[64]) QT延長症候群(LQTS):CALM1(D129G[65], F141L[66])CALM2(D95V[67], N97S[68], N97I[69], D133H[70]), CLAM3(D129G) [71] CPVT・LQTS: D131E[72], Q135P[73] [74] 特発性心室細動(IVF):CALM1(F89L) [75]

カルモジュリンを用いたCa2+インディケーター

カルモジュリンがCa2+依存的にターゲットペプチドと相互作用することを用いて、様々なGenetically-encoded Ca2+ indicatorが開発されている。大まかには、2色の異なる色の蛍光タンパク質間の蛍光共鳴エネルギー移動を用いてその2色の蛍光強度の比をレシオメトリック測定することが可能なFRETセンサー(Cameleonなど)と[76][77]、円順列変異GFPを用いてその蛍光強度からCa2+濃度を測定する単色蛍光プローブ(G-CaMPなど)がある[78][79]。2010年前後から、GCaMPの改良が進んでおり、さまざまな色のインディケーターの開発や脳活動を神経細胞レベルで長期間観察するのに用いられている[80][81][82][83]


  1. S Kakiuchi, R Yamazaki
    Stimulation of the activity of cyclic 3',5'-nucleotide phosphodiesterase by calcium ion.
    Proc. Japan Acad. 46, 387-392:1970
  2. S Kakiuchi, R Yamazaki, H Nakajima
    Properties of a heat-stable phosphodiesterase activating factor isolated from brain extract
    Proc. Japan Acad. 46, 587-592:1970
  3. Kakiuchi, S., & Yamazaki, R. (1970).
    Calcium dependent phosphodiesterase activity and its activating factor (PAF) from brain studies on cyclic 3',5'-nucleotide phosphodiesterase (3). Biochemical and biophysical research communications, 41(5), 1104-10. [PubMed:4320714] [WorldCat] [DOI]
  4. Cheung, W.Y. (1970).
    Cyclic 3',5'-nucleotide phosphodiesterase. Demonstration of an activator. Biochemical and biophysical research communications, 38(3), 533-8. [PubMed:4315350] [WorldCat] [DOI]
  5. Teo, T.S., Wang, T.H., & Wang, J.H. (1973).
    Purification and properties of the protein activator of bovine heart cyclic adenosine 3',5'-monophosphate phosphodiesterase. The Journal of biological chemistry, 248(2), 588-95. [PubMed:4346337] [WorldCat]
  6. Teo, T.S., & Wang, J.H. (1973).
    Mechanism of activation of a cyclic adenosine 3':5'-monophosphate phosphodiesterase from bovine heart by calcium ions. Identification of the protein activator as a Ca2+ binding protein. The Journal of biological chemistry, 248(17), 5950-5. [PubMed:4353626] [WorldCat]
  7. 日高弘義、垣内史朗 編
    カルモデュリン―Ca2+受容蛋白質
    :1981
  8. Stevens, F.C., Walsh, M., Ho, H.C., Teo, T.S., & Wang, J.H. (1976).
    Comparison of calcium-binding proteins. Bovine heart and brain protein activators of cyclic nucleotide phosphodiesterase and rabbit skeletal muscle troponin C. The Journal of biological chemistry, 251(15), 4495-500. [PubMed:181374] [WorldCat]
  9. Watterson, D.M., Harrelson, W.G., Keller, P.M., Sharief, F., & Vanaman, T.C. (1976).
    Structural similarities between the Ca2+-dependent regulatory proteins of 3':5'-cyclic nucleotide phosphodiesterase and actomyosin ATPase. The Journal of biological chemistry, 251(15), 4501-13. [PubMed:181375] [WorldCat]
  10. Watterson, D.M., Sharief, F., & Vanaman, T.C. (1980).
    The complete amino acid sequence of the Ca2+-dependent modulator protein (calmodulin) of bovine brain. The Journal of biological chemistry, 255(3), 962-75. [PubMed:7356670] [WorldCat]
  11. Klee, C.B. (1977).
    Conformational transition accompanying the binding of Ca2+ to the protein activator of 3',5'-cyclic adenosine monophosphate phosphodiesterase. Biochemistry, 16(5), 1017-24. [PubMed:14663] [WorldCat] [DOI]
  12. Wolff, D.J., Poirier, P.G., Brostrom, C.O., & Brostrom, M.A. (1977).
    Divalent cation binding properties of bovine brain Ca2+-dependent regulator protein. The Journal of biological chemistry, 252(12), 4108-17. [PubMed:193856] [WorldCat]
  13. Dedman, J.R., Potter, J.D., Jackson, R.L., Johnson, J.D., & Means, A.R. (1977).
    Physicochemical properties of rat testis Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase. Relationship of Ca2+-binding, conformational changes, and phosphodiesterase activity. The Journal of biological chemistry, 252(23), 8415-22. [PubMed:200611] [WorldCat]
  14. "WY Cheung, Calcium and Cell Function: Volume 1"
  15. Cheung, W.Y., Lynch, T.J., & Wallace, R.W. (1978).
    An endogenous Ca2+-dependent activator protein of brain adenylate cyclase and cyclic neucleotide phosphodiesterase. Advances in cyclic nucleotide research, 9, 233-51. [PubMed:208377] [WorldCat]
  16. Babu, Y.S., Sack, J.S., Greenhough, T.J., Bugg, C.E., Means, A.R., & Cook, W.J. (1985).
    Three-dimensional structure of calmodulin. Nature, 315(6014), 37-40. [PubMed:3990807] [WorldCat] [DOI]
  17. Babu, Y.S., Sack, J.S., Greenhough, T.J., Bugg, C.E., Means, A.R., & Cook, W.J. (1985).
    Three-dimensional structure of calmodulin. Nature, 315(6014), 37-40. [PubMed:3990807] [WorldCat] [DOI]
  18. Xia, Z., & Storm, D.R. (2005).
    The role of calmodulin as a signal integrator for synaptic plasticity. Nature reviews. Neuroscience, 6(4), 267-76. [PubMed:15803158] [WorldCat] [DOI]
  19. Linse, S., Helmersson, A., & Forsén, S. (1991).
    Calcium binding to calmodulin and its globular domains. The Journal of biological chemistry, 266(13), 8050-4. [PubMed:1902469] [WorldCat]
  20. Rhoads, A.R., & Friedberg, F. (1997).
    Sequence motifs for calmodulin recognition. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 11(5), 331-40. [PubMed:9141499] [WorldCat] [DOI]
  21. Tidow, H., & Nissen, P. (2013).
    Structural diversity of calmodulin binding to its target sites. The FEBS journal, 280(21), 5551-65. [PubMed:23601118] [WorldCat] [DOI]
  22. Marshall, C.B., Nishikawa, T., Osawa, M., Stathopulos, P.B., & Ikura, M. (2015).
    Calmodulin and STIM proteins: Two major calcium sensors in the cytoplasm and endoplasmic reticulum. Biochemical and biophysical research communications, 460(1), 5-21. [PubMed:25998729] [WorldCat] [DOI]
  23. S Kakiuchi, R Yamazaki
    Stimulation of the activity of cyclic 3',5'-nucleotide phosphodiesterase by calcium ion.
    Proc. Japan Acad. 46, 387-392:1970
  24. Cheung, W.Y. (1970).
    Cyclic 3',5'-nucleotide phosphodiesterase. Demonstration of an activator. Biochemical and biophysical research communications, 38(3), 533-8. [PubMed:4315350] [WorldCat] [DOI]
  25. Westcott, K.R., La Porte, D.C., & Storm, D.R. (1979).
    Resolution of adenylate cyclase sensitive and insensitive to Ca2+ and calcium-dependent regulatory protein (CDR) by CDR-sepharose affinity chromatography. Proceedings of the National Academy of Sciences of the United States of America, 76(1), 204-8. [PubMed:284333] [PMC] [WorldCat] [DOI]
  26. Krupinski, J., Coussen, F., Bakalyar, H.A., Tang, W.J., Feinstein, P.G., Orth, K., ..., & Gilman, A.G. (1989).
    Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science (New York, N.Y.), 244(4912), 1558-64. [PubMed:2472670] [WorldCat] [DOI]
  27. Feinstein, P.G., Schrader, K.A., Bakalyar, H.A., Tang, W.J., Krupinski, J., Gilman, A.G., & Reed, R.R. (1991).
    Molecular cloning and characterization of a Ca2+/calmodulin-insensitive adenylyl cyclase from rat brain. Proceedings of the National Academy of Sciences of the United States of America, 88(22), 10173-7. [PubMed:1719547] [PMC] [WorldCat] [DOI]
  28. Gopinath, R.M., & Vincenzi, F.F. (1977).
    Phosphodiesterase protein activator mimics red blood cell cytoplasmic activator of (Ca2+-Mg2+)ATPase. Biochemical and biophysical research communications, 77(4), 1203-9. [PubMed:197955] [WorldCat] [DOI]
  29. Jarrett, H.W., & Penniston, J.T. (1977).
    Partial purification of the Ca2+-Mg2+ ATPase activator from human erythrocytes: its similarity to the activator of 3':5' - cyclic nucleotide phosphodiesterase. Biochemical and biophysical research communications, 77(4), 1210-6. [PubMed:197956] [WorldCat] [DOI]
  30. Vorherr, T., James, P., Krebs, J., Enyedi, A., McCormick, D.J., Penniston, J.T., & Carafoli, E. (1990).
    Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump. Biochemistry, 29(2), 355-65. [PubMed:2154244] [WorldCat] [DOI]
  31. Ehlers, M.D., Zhang, S., Bernhadt, J.P., & Huganir, R.L. (1996).
    Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell, 84(5), 745-55. [PubMed:8625412] [WorldCat] [DOI]
  32. Minakami, R., Jinnai, N., & Sugiyama, H. (1997).
    Phosphorylation and calmodulin binding of the metabotropic glutamate receptor subtype 5 (mGluR5) are antagonistic in vitro. The Journal of biological chemistry, 272(32), 20291-8. [PubMed:9242710] [WorldCat] [DOI]
  33. Nakajima, Y., Yamamoto, T., Nakayama, T., & Nakanishi, S. (1999).
    A relationship between protein kinase C phosphorylation and calmodulin binding to the metabotropic glutamate receptor subtype 7. The Journal of biological chemistry, 274(39), 27573-7. [PubMed:10488094] [WorldCat] [DOI]
  34. Peterson, B.Z., DeMaria, C.D., Adelman, J.P., & Yue, D.T. (1999).
    Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. Neuron, 22(3), 549-58. [PubMed:10197534] [WorldCat] [DOI]
  35. Zühlke, R.D., Pitt, G.S., Deisseroth, K., Tsien, R.W., & Reuter, H. (1999).
    Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature, 399(6732), 159-62. [PubMed:10335846] [WorldCat] [DOI]
  36. Lee, A., Wong, S.T., Gallagher, D., Li, B., Storm, D.R., Scheuer, T., & Catterall, W.A. (1999).
    Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature, 399(6732), 155-9. [PubMed:10335845] [WorldCat] [DOI]
  37. Maeda, N., Kawasaki, T., Nakade, S., Yokota, N., Taguchi, T., Kasai, M., & Mikoshiba, K. (1991).
    Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. The Journal of biological chemistry, 266(2), 1109-16. [PubMed:1845986] [WorldCat]
  38. Walsh, M.P., Dabrowska, R., Hinkins, S., & Hartshorne, D.J. (1982).
    Calcium-independent myosin light chain kinase of smooth muscle. Preparation by limited chymotryptic digestion of the calcium ion dependent enzyme, purification, and characterization. Biochemistry, 21(8), 1919-25. [PubMed:6896283] [WorldCat] [DOI]
  39. Blumenthal, D.K., Takio, K., Edelman, A.M., Charbonneau, H., Titani, K., Walsh, K.A., & Krebs, E.G. (1985).
    Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Proceedings of the National Academy of Sciences of the United States of America, 82(10), 3187-91. [PubMed:3858814] [PMC] [WorldCat] [DOI]
  40. Lukas, T.J., Burgess, W.H., Prendergast, F.G., Lau, W., & Watterson, D.M. (1986).
    Calmodulin binding domains: characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase. Biochemistry, 25(6), 1458-64. [PubMed:3754463] [WorldCat] [DOI]
  41. Foster, C., Van Fleet, M., & Marshak, A. (1986).
    Tryptic digestion of myosin light chain kinase produces an inactive fragment that is activated on continued digestion. Archives of biochemistry and biophysics, 251(2), 616-23. [PubMed:3800388] [WorldCat] [DOI]
  42. Kennedy, M.B., & Greengard, P. (1981).
    Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate protein I at distinct sites. Proceedings of the National Academy of Sciences of the United States of America, 78(2), 1293-7. [PubMed:6785753] [PMC] [WorldCat] [DOI]
  43. Schulman, H., & Greengard, P. (1978).
    Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein. Nature, 271(5644), 478-9. [PubMed:628428] [WorldCat] [DOI]
  44. Yamauchi, T., & Fujisawa, H. (1980).
    Evidence for three distinct forms of calmodulin-dependent protein kinases from rat brain. FEBS letters, 116(2), 141-4. [PubMed:7409141] [WorldCat] [DOI]
  45. Ohmstede, C.A., Jensen, K.F., & Sahyoun, N.E. (1989).
    Ca2+/calmodulin-dependent protein kinase enriched in cerebellar granule cells. Identification of a novel neuronal calmodulin-dependent protein kinase. The Journal of biological chemistry, 264(10), 5866-75. [PubMed:2538431] [WorldCat]
  46. Tokumitsu, H., Brickey, D.A., Glod, J., Hidaka, H., Sikela, J., & Soderling, T.R. (1994).
    Activation mechanisms for Ca2+/calmodulin-dependent protein kinase IV. Identification of a brain CaM-kinase IV kinase. The Journal of biological chemistry, 269(46), 28640-7. [PubMed:7961813] [WorldCat]
  47. Haribabu, B., Hook, S.S., Selbert, M.A., Goldstein, E.G., Tomhave, E.D., Edelman, A.M., ..., & Means, A.R. (1995).
    Human calcium-calmodulin dependent protein kinase I: cDNA cloning, domain structure and activation by phosphorylation at threonine-177 by calcium-calmodulin dependent protein kinase I kinase. The EMBO journal, 14(15), 3679-86. [PubMed:7641687] [PMC] [WorldCat]
  48. Cohen, P., Burchell, A., Foulkes, J.G., Cohen, P.T., Vanaman, T.C., & Nairn, C. (1978).
    Identification of the Ca2+-dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase. FEBS letters, 92(2), 287-93. [PubMed:212300] [WorldCat] [DOI]
  49. Wang, J.H., & Desai, R. (1977).
    Modulator binding protein. Bovine brain protein exhibiting the Ca2+-dependent association with the protein modulator of cyclic nucleotide phosphodiesterase. The Journal of biological chemistry, 252(12), 4175-84. [PubMed:193860] [WorldCat]
  50. Klee, C.B., & Krinks, M.H. (1978).
    Purification of cyclic 3',5'-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose. Biochemistry, 17(1), 120-6. [PubMed:201280] [WorldCat] [DOI]
  51. Lee, Y.C., & Wolff, J. (1984).
    Calmodulin binds to both microtubule-associated protein 2 and tau proteins. The Journal of biological chemistry, 259(2), 1226-30. [PubMed:6420403] [WorldCat]
  52. Lee, Y.C., & Wolff, J. (1984).
    Calmodulin binds to both microtubule-associated protein 2 and tau proteins. The Journal of biological chemistry, 259(2), 1226-30. [PubMed:6420403] [WorldCat]
  53. Gardner, K., & Bennett, V. (1986).
    A new erythrocyte membrane-associated protein with calmodulin binding activity. Identification and purification. The Journal of biological chemistry, 261(3), 1339-48. [PubMed:3511042] [WorldCat]
  54. Bredt, D.S., & Snyder, S.H. (1990).
    Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proceedings of the National Academy of Sciences of the United States of America, 87(2), 682-5. [PubMed:1689048] [PMC] [WorldCat] [DOI]
  55. Förstermann, U., Gorsky, L.D., Pollock, J.S., Ishii, K., Schmidt, H.H., Heller, M., & Murad, F. (1990).
    Hormone-induced biosynthesis of endothelium-derived relaxing factor/nitric oxide-like material in N1E-115 neuroblastoma cells requires calcium and calmodulin. Molecular pharmacology, 38(1), 7-13. [PubMed:2370855] [WorldCat]
  56. Berchtold, M.W., Egli, R., Rhyner, J.A., Hameister, H., & Strehler, E.E. (1993).
    Localization of the human bona fide calmodulin genes CALM1, CALM2, and CALM3 to chromosomes 14q24-q31, 2p21.1-p21.3, and 19q13.2-q13.3. Genomics, 16(2), 461-5. [PubMed:8314583] [WorldCat] [DOI]
  57. Honda, F., & Imamura, H. (1968).
    Inhibition of cyclic 3',5'-nucleotide phosphodiesterase by phenothiazine and reserpine derivatives. Biochimica et biophysica acta, 161(1), 267-9. [PubMed:4298921] [WorldCat] [DOI]
  58. B Weiss, R. Fertel, R Figlin, and P Uzunov
    Selective Alteration of the Activity of the Multiple Forms of Adenosine 3', 5'-Monophosphate Phosphodiesterase of Rat Cerebrum
    Mol. Pharmacol. 10, 615-625:1981
  59. Martínez-Luis, S., Pérez-Vásquez, A., & Mata, R. (2007).
    Natural products with calmodulin inhibitor properties. Phytochemistry, 68(14), 1882-903. [PubMed:17400264] [WorldCat] [DOI]
  60. Mata, R., Figueroa, M., González-Andrade, M., Rivera-Chávez, J.A., Madariaga-Mazón, A., & Del Valle, P. (2015).
    Calmodulin inhibitors from natural sources: an update. Journal of natural products, 78(3), 576-86. [PubMed:25536331] [WorldCat] [DOI]
  61. Tanaka, T., & Hidaka, H. (1980).
    Hydrophobic regions function in calmodulin-enzyme(s) interactions. The Journal of biological chemistry, 255(23), 11078-80. [PubMed:6254958] [WorldCat]
  62. H Van Belle
    R 24 571: A potent inhibitor of calmodulin-activated enzymes.
    Cell Calcium 2, 483-494:1981
  63. Nyegaard, M., Overgaard, M.T., Søndergaard, M.T., Vranas, M., Behr, E.R., Hildebrandt, L.L., ..., & Børglum, A.D. (2012).
    Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. American journal of human genetics, 91(4), 703-12. [PubMed:23040497] [PMC] [WorldCat] [DOI]
  64. Nyegaard, M., Overgaard, M.T., Søndergaard, M.T., Vranas, M., Behr, E.R., Hildebrandt, L.L., ..., & Børglum, A.D. (2012).
    Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. American journal of human genetics, 91(4), 703-12. [PubMed:23040497] [PMC] [WorldCat] [DOI]
  65. Crotti, L., Johnson, C.N., Graf, E., De Ferrari, G.M., Cuneo, B.F., Ovadia, M., ..., & George, A.L. (2013).
    Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation, 127(9), 1009-17. [PubMed:23388215] [PMC] [WorldCat] [DOI]
  66. Crotti, L., Johnson, C.N., Graf, E., De Ferrari, G.M., Cuneo, B.F., Ovadia, M., ..., & George, A.L. (2013).
    Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation, 127(9), 1009-17. [PubMed:23388215] [PMC] [WorldCat] [DOI]
  67. Makita, N., Yagihara, N., Crotti, L., Johnson, C.N., Beckmann, B.M., Roh, M.S., ..., & George, A.L. (2014).
    Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circulation. Cardiovascular genetics, 7(4), 466-74. [PubMed:24917665] [PMC] [WorldCat] [DOI]
  68. Makita, N., Yagihara, N., Crotti, L., Johnson, C.N., Beckmann, B.M., Roh, M.S., ..., & George, A.L. (2014).
    Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circulation. Cardiovascular genetics, 7(4), 466-74. [PubMed:24917665] [PMC] [WorldCat] [DOI]
  69. Crotti, L., Johnson, C.N., Graf, E., De Ferrari, G.M., Cuneo, B.F., Ovadia, M., ..., & George, A.L. (2013).
    Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation, 127(9), 1009-17. [PubMed:23388215] [PMC] [WorldCat] [DOI]
  70. Makita, N., Yagihara, N., Crotti, L., Johnson, C.N., Beckmann, B.M., Roh, M.S., ..., & George, A.L. (2014).
    Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circulation. Cardiovascular genetics, 7(4), 466-74. [PubMed:24917665] [PMC] [WorldCat] [DOI]
  71. Reed, G.J., Boczek, N.J., Etheridge, S.P., & Ackerman, M.J. (2015).
    CALM3 mutation associated with long QT syndrome. Heart rhythm, 12(2), 419-22. [PubMed:25460178] [PMC] [WorldCat] [DOI]
  72. Makita, N., Yagihara, N., Crotti, L., Johnson, C.N., Beckmann, B.M., Roh, M.S., ..., & George, A.L. (2014).
    Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circulation. Cardiovascular genetics, 7(4), 466-74. [PubMed:24917665] [PMC] [WorldCat] [DOI]
  73. Makita, N., Yagihara, N., Crotti, L., Johnson, C.N., Beckmann, B.M., Roh, M.S., ..., & George, A.L. (2014).
    Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circulation. Cardiovascular genetics, 7(4), 466-74. [PubMed:24917665] [PMC] [WorldCat] [DOI]
  74. Makita, N., Yagihara, N., Crotti, L., Johnson, C.N., Beckmann, B.M., Roh, M.S., ..., & George, A.L. (2014).
    Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circulation. Cardiovascular genetics, 7(4), 466-74. [PubMed:24917665] [PMC] [WorldCat] [DOI]
  75. Marsman, R.F., Barc, J., Beekman, L., Alders, M., Dooijes, D., van den Wijngaard, A., ..., & Bezzina, C.R. (2014).
    A mutation in CALM1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence. Journal of the American College of Cardiology, 63(3), 259-66. [PubMed:24076290] [WorldCat] [DOI]
  76. Romoser, V.A., Hinkle, P.M., & Persechini, A. (1997).
    Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. A new class of fluorescent indicators. The Journal of biological chemistry, 272(20), 13270-4. [PubMed:9148946] [WorldCat] [DOI]
  77. Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M., & Tsien, R.Y. (1997).
    Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature, 388(6645), 882-7. [PubMed:9278050] [WorldCat] [DOI]
  78. Nakai, J., Ohkura, M., & Imoto, K. (2001).
    A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nature biotechnology, 19(2), 137-41. [PubMed:11175727] [WorldCat] [DOI]
  79. Nagai, T., Sawano, A., Park, E.S., & Miyawaki, A. (2001).
    Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proceedings of the National Academy of Sciences of the United States of America, 98(6), 3197-202. [PubMed:11248055] [PMC] [WorldCat] [DOI]
  80. Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H., ..., & Looger, L.L. (2009).
    Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature methods, 6(12), 875-81. [PubMed:19898485] [PMC] [WorldCat] [DOI]
  81. Zhao, Y., Araki, S., Wu, J., Teramoto, T., Chang, Y.F., Nakano, M., ..., & Campbell, R.E. (2011).
    An expanded palette of genetically encoded Ca²⁺ indicators. Science (New York, N.Y.), 333(6051), 1888-91. [PubMed:21903779] [PMC] [WorldCat] [DOI]
  82. Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., ..., & Kim, D.S. (2013).
    Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499(7458), 295-300. [PubMed:23868258] [PMC] [WorldCat] [DOI]
  83. Inoue, M., Takeuchi, A., Horigane, S., Ohkura, M., Gengyo-Ando, K., Fujii, H., ..., & Bito, H. (2015).
    Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nature methods, 12(1), 64-70. [PubMed:25419959] [WorldCat] [DOI]