「シングルセルRNAシーケンシング」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
24行目: 24行目:


===scRNA-seqの現状===
===scRNA-seqの現状===
それ以来、完全長cDNAを増幅したり、細胞ごとに異なる分子識別子(unique molecular identifiers: UMI)を持つcDNAを増幅させるscRNA-seqが考案され始め、2013年には、このような1細胞のシーケンシング技術が、Nature Methods誌のMethod of the Year に選ばれた<ref> https://www.nature.com/collections/mysbdwgfll<ref>。たとえば、SMART-seq(Switch mechanism at the 5' End of RNA Templates)<ref><pubmed>22820318</pubmed></ref>およびその改良されたプロトコルであるSMART-seq2 <ref><pubmed> 24056875 </pubmed></ref> <ref><pubmed>24385147</pubmed></ref>は、完全長cDNA合成のためのプロトコルである(既に、SMART-seq3という改良プロトコールもあるhttps://doi.org/10.1101/817924)。また、MARS-seq(Massively parallel single-cell RNA-seq)<ref><pubmed> 24531970 </pubmed></ref>、STRT(single-cell tagged reverse transcription)<ref><pubmed>21543516</pubmed></ref> <ref><pubmed>24363023</pubmed></ref>、CEL-seq(Cell Expression by Linear amplification and Sequencing)<ref><pubmed>22939981</pubmed></ref>、CEL-seq2<ref><pubmed> 27121950 </pubmed></ref>、Seq-Well <ref><pubmed> 28192419</pubmed></ref>、Microwell-seq<ref><pubmed>29474909</pubmed></ref>などが報告されてきた。最近になって、sci-RNA-seq (single-cell combinatorial indexing RNA sequencing) <ref><pubmed> 28818938 </pubmed></ref>, SPLiT-seq(split-pool ligation-based transcriptome sequencing)<ref><pubmed>29545511</pubmed></ref>のように特殊な機器を利用せずに細胞特異的UMIを保持するcDNAを作製する方法も報告されている。
それ以来、完全長cDNAを増幅したり、細胞ごとに異なる分子識別子(unique molecular identifiers: UMI)を持つcDNAを増幅させるscRNA-seqが考案され始め、2013年には、このような1細胞のシーケンシング技術が、Nature Methods誌のMethod of the Year に選ばれた[https://www.nature.com/collections/mysbdwgfll]。たとえば、SMART-seq(Switch mechanism at the 5' End of RNA Templates)<ref><pubmed>22820318</pubmed></ref>およびその改良されたプロトコルであるSMART-seq2 <ref><pubmed> 24056875 </pubmed></ref> <ref><pubmed>24385147</pubmed></ref>は、完全長cDNA合成のためのプロトコルである(既に、SMART-seq3という改良プロトコールもあるhttps://doi.org/10.1101/817924)。また、MARS-seq(Massively parallel single-cell RNA-seq)<ref><pubmed> 24531970 </pubmed></ref>、STRT(single-cell tagged reverse transcription)<ref><pubmed>21543516</pubmed></ref> <ref><pubmed>24363023</pubmed></ref>、CEL-seq(Cell Expression by Linear amplification and Sequencing)<ref><pubmed>22939981</pubmed></ref>、CEL-seq2<ref><pubmed> 27121950 </pubmed></ref>、Seq-Well <ref><pubmed> 28192419</pubmed></ref>、Microwell-seq<ref><pubmed>29474909</pubmed></ref>などが報告されてきた。最近になって、sci-RNA-seq (single-cell combinatorial indexing RNA sequencing) <ref><pubmed> 28818938 </pubmed></ref>, SPLiT-seq(split-pool ligation-based transcriptome sequencing)<ref><pubmed>29545511</pubmed></ref>のように特殊な機器を利用せずに細胞特異的UMIを保持するcDNAを作製する方法も報告されている。


これらの方法のうち、SMART-seq、その改良法であるSMART-seq2は、微小ピペットによるマニュアル捕獲、セルソーター、レーザー捕獲法などを用いる多穴プレート法、更に半導体集積回路製作技術で作った流体集積回路を利用するFluidigm C1の装置[https://jp.fluidigm.com]と組み合わせることで利用される機会が多い<ref><pubmed>30405621</pubmed></ref>。このSMART-seq2プロトコールの特徴は、mRNAの全領域を読むことで、全長トランスクリプトームを得ることができることであり、mRNAのスプライシングバリアントなどのアイソフォーム、アリルごとの発現情報が得られるSNPs、変異の検出にも利用できる。また、それぞれ細胞ごとの反応を独立した場所で行うため、別の細胞の反応と混じる可能性がない。これらの点が、次に説明するDropletを使用して3’末端のみを標的にしたscRNA-seqに比べた場合の長所であるが、その高コスト(1細胞あたり数十ドル)と処理可能な細胞数の少なさが短所である。
これらの方法のうち、SMART-seq、その改良法であるSMART-seq2は、微小ピペットによるマニュアル捕獲、セルソーター、レーザー捕獲法などを用いる多穴プレート法、更に半導体集積回路製作技術で作った流体集積回路を利用するFluidigm C1の装置[https://jp.fluidigm.com]と組み合わせることで利用される機会が多い<ref><pubmed>30405621</pubmed></ref>。このSMART-seq2プロトコールの特徴は、mRNAの全領域を読むことで、全長トランスクリプトームを得ることができることであり、mRNAのスプライシングバリアントなどのアイソフォーム、アリルごとの発現情報が得られるSNPs、変異の検出にも利用できる。また、それぞれ細胞ごとの反応を独立した場所で行うため、別の細胞の反応と混じる可能性がない。これらの点が、次に説明するDropletを使用して3’末端のみを標的にしたscRNA-seqに比べた場合の長所であるが、その高コスト(1細胞あたり数十ドル)と処理可能な細胞数の少なさが短所である。
30行目: 30行目:


===Droplet使用の3’エンドリード法===
===Droplet使用の3’エンドリード法===
しかしながら、もっとも重要なscRNA-seqの方法論についての進歩は、2015年、Harvard Medical Schoolの独立した2つのグループが、inDropそしてDrop-seqという類似した2つの高スループットな方法を開発したことであろう<ref><pubmed>26000487</pubmed></ref> <ref><pubmed>26000488 </pubmed></ref>。これらの方法では、マイクロ流体力学 (Microfluidics) 、 Cell BarcodeとUMIとしてDNAバーコーディング (DNA barcoding) 、そしてNGSを利用することで、自動化とサンプル調製の容易さから、1つの細胞あたりに要するコストを大幅に低下させることに成功した(Drop-seqは発表時で、1細胞あたり約5セント)。つまり、細胞1つずつをマイクロ流体力学によるエマルジョン技術を利用した装置に流入させ、その1細胞を1つのDroplet(油中水滴)に自動的に閉じ込める。そのDroplet中には、DropletごとにCell barcode/UMIとして異なったDNAバーコードを持つゲルビーズ(Gel Beads in Emulsion, GEMs)が入っており、それを足場に3’末端のみを標的にしたcDNA合成反応を実施することで、同じ細胞に含まれていたmRNAが同じUMIを持つcDNAとして合成され、そのmRNA/cDNAが由来した細胞を識別できるということを利用している(図1)。このようにして3’末端のみを増幅したバーコード付きcDNAをNGSで配列決定することによりscRNA-seqが可能になる。なお、DropSeqはコストが低いが、細胞の取得率と検出感度が低い弱点がある。inDropはDropSeqより細胞取得率が高く、パラメータを調整することで低レベルで発現される遺伝子の検出にも有利である<ref><pubmed>30472192</pubmed></ref>。
しかしながら、もっとも重要なscRNA-seqの方法論についての進歩は、2015年、Harvard Medical Schoolの独立した2つのグループが、inDropそしてDrop-seqという類似した2つの高スループットな方法を開発したことであろう<ref><pubmed>26000487</pubmed></ref> <ref><pubmed>26000488 </pubmed></ref>。これらの方法では、マイクロ流体力学 (Microfluidics) 、 Cell BarcodeとUMIとしてDNAバーコーディング (DNA barcoding) 、そしてNGSを利用することで、自動化とサンプル調製の容易さから、1つの細胞あたりに要するコストを大幅に低下させることに成功した(Drop-seqは発表時で、1細胞あたり約5セント)。つまり、細胞1つずつをマイクロ流体力学によるエマルジョン技術を利用した装置に流入させ、その1細胞を1つのDroplet(油中水滴)に自動的に閉じ込める。そのDroplet中には、DropletごとにCell barcode/UMIとして異なったDNAバーコードを持つゲルビーズ(Gel Beads in Emulsion, GEMs)が入っており、それを足場に3’末端のみを標的にしたcDNA合成反応を実施することで、同じ細胞に含まれていたmRNAが同じUMIを持つcDNAとして合成され、そのmRNA/cDNAが由来した細胞を識別できるということを利用している(図1)。このようにして3’末端のみを増幅したバーコード付きcDNAをNGSで配列決定することによりscRNA-seqが可能になる。なお、DropSeqはコストが低いが、細胞の取得率と検出感度が低い弱点がある。inDropはDropSeqより細胞取得率が高く、パラメータを調整することで低レベルで発現される遺伝子の検出にも有利である<ref><pubmed>30472192</pubmed></ref>。
http://www.youtube.com/watch?v=fHq9ewdYEWM
http://www.youtube.com/watch?v=fHq9ewdYEWM
DropSeqのセットアップはDolomite Bio ([https://www.dolomite-bio.com])、inDropは1 Cellbio社から販売されている[https://1cell-bio.com]。しかし、特に重要なのは10xGenomics社が同様の原理を用いた「Chromium」と命名された機器と試薬のシステムを市販することで、多くの研究者に利用できることになったことである[https://www.10xgenomics.com/jp/]。Svenssonらによる最近のデータベース[https://www.biorxiv.org/content/10.1101/742304v2], [http://www.nxn.se/single-cell-studies/gui]では、scRNA-seqを用いた論文で用いられた方法について調査しているが、この数年、10xGenomics社Chromiumを用いた論文が飛躍的に増加し、scRNA-seqの方法として、最も一般的になりつつあることがわかる(現在、10XGenomics社とBioRad社の間で関連特許をめぐる係争がある。)。このシステムは市販であるので導入が容易であり、DropSeqやinDropに比べ、多くの転写産物の高感度検出が可能であるが、ランニングコストは高い<ref><pubmed>30472192</pubmed></ref>。
DropSeqのセットアップはDolomite Bio ([https://www.dolomite-bio.com])、inDropは1 Cellbio社から販売されている[https://1cell-bio.com]。しかし、特に重要なのは10xGenomics社が同様の原理を用いた「Chromium」と命名された機器と試薬のシステムを市販することで、多くの研究者に利用できることになったことである[https://www.10xgenomics.com/jp/]。Svenssonらによる最近のデータベース[https://www.biorxiv.org/content/10.1101/742304v2], [http://www.nxn.se/single-cell-studies/gui]では、scRNA-seqを用いた論文で用いられた方法について調査しているが、この数年、10xGenomics社Chromiumを用いた論文が飛躍的に増加し、scRNA-seqの方法として、最も一般的になりつつあることがわかる(現在、10XGenomics社とBioRad社の間で関連特許をめぐる係争がある。)。このシステムは市販であるので導入が容易であり、DropSeqやinDropに比べ、多くの転写産物の高感度検出が可能であるが、ランニングコストは高い<ref><pubmed>30472192</pubmed></ref>。
[[ファイル:ScRNAseqFig1.jpg|サムネイル|右]]




==scRNA-seqの実際==
==scRNA-seqの実際==
ここでは主流になっている10xGenomics社のChromiumを用いた方法とSMART-seq2などを用いた方法に共通する方法の実際について俯瞰する。scRNA-seqの利用には、4つのステップがある(図2)<ref><pubmed>30089861</pubmed></ref>。1)個体や組織を採集し、そこから細胞あるいは細胞核を個別にすること。2)ChromiumやSMART-seq2などによる個々の細胞からのライブラリーの作製とNGSシーケンシング。3)前処理(preprocessing、得られた配列の整理)。4)ダウンストリーム解析(生物学的な情報を得る)。これらのうち、2)の段階については、上に記述したように市販の機器や試薬を利用する機会が多くなっているので、そのためのマニュアル等を参考にするのが現実的である。
ここでは主流になっている10xGenomics社のChromiumを用いた方法とSMART-seq2などを用いた方法に共通する方法の実際について俯瞰する。scRNA-seqの利用には、4つのステップがある(図2)<ref><pubmed>30089861</pubmed></ref>。1)個体や組織を採集し、そこから細胞あるいは細胞核を個別にすること。2)ChromiumやSMART-seq2などによる個々の細胞からのライブラリーの作製とNGSシーケンシング。3)前処理(preprocessing、得られた配列の整理)。4)ダウンストリーム解析(生物学的な情報を得る)。これらのうち、2)の段階については、上に記述したように市販の機器や試薬を利用する機会が多くなっているので、そのためのマニュアル等を参考にするのが現実的である。
[[ファイル:ScRNAseqFig2.jpg|サムネイル|右]]


===組織からの細胞、細胞核の分離===
===組織からの細胞、細胞核の分離===
43行目: 45行目:
単離した細胞は、そのまま10xGenomicsのChromiumのプラットフォームに導入することができるが、抗体や蛍光タンパク質レポーターなどを用いたFACS、パニング、MACS(磁気ビーズカラム)などによる特定のマーカーを細胞表面などに発現する細胞の選択的濃縮や除去を行う場合もある。更に、抗体にUMIをカップリングさせるCITE-seqについては、下記のマルチモーダルなオミクスの項目で述べる。
単離した細胞は、そのまま10xGenomicsのChromiumのプラットフォームに導入することができるが、抗体や蛍光タンパク質レポーターなどを用いたFACS、パニング、MACS(磁気ビーズカラム)などによる特定のマーカーを細胞表面などに発現する細胞の選択的濃縮や除去を行う場合もある。更に、抗体にUMIをカップリングさせるCITE-seqについては、下記のマルチモーダルなオミクスの項目で述べる。


なお、ヒト組織や希少生物などから生細胞を得ることは困難なことが多い。この場合、scRNA-seqの変法として、凍結した組織から、各細胞由来の核を調製し、核内のmRNAを分析するsnRNA-seq (single-nucleus RNA-seq)が利用されている。ただ、この場合、FACSなどによる特定細胞集団の同定が難しく、細胞質を持つ生細胞を利用した場合と同等な結果が必ずしも得られない<ref><pubmed>24248345</pubmed></ref><ref><pubmed>26890679</pubmed></ref>  <ref><pubmed>27471252</pubmed></ref><ref><pubmed>28846088</pubmed></ref><<ref><pubmed>29220646</pubmed></ref><ref><pubmed>28846088</pubmed></ref><ref><pubmed>30586455</pubmed></ref><ref><pubmed>28729663</pubmed></ref><ref><pubmed>31728515</pubmed></ref> [https://www.biorxiv.org/content/10.1101/630087v1]  。snRNA-seqでは、組織をそのまま凍結することから開始するので、上述したscRNA-seqの問題である酵素処理や加温などを避けることができる。こうしたプロトコールの一部は、protocols.ioのHuman Cell Atlasのグループ[https://www.protocols.io/groups/hca]で公開されている。
なお、ヒト組織や希少生物などから生細胞を得ることは困難なことが多い。この場合、scRNA-seqの変法として、凍結した組織から、各細胞由来の核を調製し、核内のmRNAを分析する'''snRNA-seq (single-nucleus RNA-seq)'''が利用されている。ただ、この場合、FACSなどによる特定細胞集団の同定が難しく、細胞質を持つ生細胞を利用した場合と同等な結果が必ずしも得られない<ref><pubmed>24248345</pubmed></ref><ref><pubmed>26890679</pubmed></ref>  <ref><pubmed>27471252</pubmed></ref><ref><pubmed>28846088</pubmed></ref><<ref><pubmed>29220646</pubmed></ref><ref><pubmed>28846088</pubmed></ref><ref><pubmed>30586455</pubmed></ref><ref><pubmed>28729663</pubmed></ref><ref><pubmed>31728515</pubmed></ref> [https://www.biorxiv.org/content/10.1101/630087v1]  。snRNA-seqでは、組織をそのまま凍結することから開始するので、上述したscRNA-seqの問題である酵素処理や加温などを避けることができる。こうしたプロトコールの一部は、protocols.ioのHuman Cell Atlasのグループ[https://www.protocols.io/groups/hca]で公開されている。




58行目: 60行目:
このようなノーマライゼーションの過程を経て、scRNA-seqのデータ解析において、最初に行うのが、次元圧縮 (dimensionality reduction)である<ref><pubmed>30617341</pubmed></ref><ref><pubmed>31780648</pubmed></ref>
このようなノーマライゼーションの過程を経て、scRNA-seqのデータ解析において、最初に行うのが、次元圧縮 (dimensionality reduction)である<ref><pubmed>30617341</pubmed></ref><ref><pubmed>31780648</pubmed></ref>
。PCA (Principal component analysis, 主成分分析)、UMAP(Uniform Manifold Approximation and Projection, 均一マニフォールド近似と投影)、Diffusion maps,  t-SNE(t-distributed Stochastic Neighbor Embedding , t分布型確率的近傍埋込み)などの手法が用いられる。 特に、t-SNE[http://www.jmlr.org/papers/v9/vandermaaten08a.html](ティースニーと読むのが通常)は、高次元データを低次元の点の集合として可視化することで、それぞれの細胞の持つトランスクリプトームの類似度についての直観的な表示が可能でありしばしば用いられる(図3)。次に、Louvainアルゴリズムなどでクラスタリング(コミュニティ分割)を行い、tSNEグラフ上に表示できる。こうして、違ったタイプの細胞の集合が別のクラスターとして表示される。しかし、データによっては、tSNEだけでなく、他の方法でパラメータの調節を行うことで違ったデータ解釈(別の細胞クラスターの同定)ができるケースもあり、いくつかの方法を試してみることが推奨される。
。PCA (Principal component analysis, 主成分分析)、UMAP(Uniform Manifold Approximation and Projection, 均一マニフォールド近似と投影)、Diffusion maps,  t-SNE(t-distributed Stochastic Neighbor Embedding , t分布型確率的近傍埋込み)などの手法が用いられる。 特に、t-SNE[http://www.jmlr.org/papers/v9/vandermaaten08a.html](ティースニーと読むのが通常)は、高次元データを低次元の点の集合として可視化することで、それぞれの細胞の持つトランスクリプトームの類似度についての直観的な表示が可能でありしばしば用いられる(図3)。次に、Louvainアルゴリズムなどでクラスタリング(コミュニティ分割)を行い、tSNEグラフ上に表示できる。こうして、違ったタイプの細胞の集合が別のクラスターとして表示される。しかし、データによっては、tSNEだけでなく、他の方法でパラメータの調節を行うことで違ったデータ解釈(別の細胞クラスターの同定)ができるケースもあり、いくつかの方法を試してみることが推奨される。
[[ファイル:ScRNAseqFig3.jpg|サムネイル|右]]




65行目: 68行目:
。クラスタリングにより、異なった細胞集団の存在が認識されると、それぞれのクラスターに特徴的に発現している遺伝子を具体的に探索し、細胞集団の持つバイオマーカーによって、そのクラスターの同定が可能になる。例えば、既にニューロンとグリア細胞に特異的に発現する典型的マーカーはよく知られており、それぞれのクラスターの識別は容易である。更に、ニューロンのタイプごとに区別されるマーカーや神経活動により変化したニューロンの状態は、In situ hybridizationや免疫組織化学などにより確認できる。このようなクラスターごとに発現が異なる遺伝子(差次的発現遺伝子)を見つけるためには(Differential expression analysis, DE analysis)、SeuratのFindMarkersコマンドでも利用可能である目的別の解析のための専用コード(MAST <ref><pubmed>26653891</pubmed></ref>、DESeq2 <ref><pubmed>25516281</pubmed></ref>
。クラスタリングにより、異なった細胞集団の存在が認識されると、それぞれのクラスターに特徴的に発現している遺伝子を具体的に探索し、細胞集団の持つバイオマーカーによって、そのクラスターの同定が可能になる。例えば、既にニューロンとグリア細胞に特異的に発現する典型的マーカーはよく知られており、それぞれのクラスターの識別は容易である。更に、ニューロンのタイプごとに区別されるマーカーや神経活動により変化したニューロンの状態は、In situ hybridizationや免疫組織化学などにより確認できる。このようなクラスターごとに発現が異なる遺伝子(差次的発現遺伝子)を見つけるためには(Differential expression analysis, DE analysis)、SeuratのFindMarkersコマンドでも利用可能である目的別の解析のための専用コード(MAST <ref><pubmed>26653891</pubmed></ref>、DESeq2 <ref><pubmed>25516281</pubmed></ref>
など)を用いることができる。scRNA-seqの解析に必要なコードは、scRNA-tools [https://www.scrna-tools.org], Awesome single cell [https://github.com/seandavi/awesome-single-cell], Bioconductor[https://www.bioconductor.org]で紹介されており、ほとんどがダウンロード可能である。また、最新の情報については、bioRxivなどのプレプリントサーバで公開されていることが多く、scRNA-seqのデータ(下記参考)とともに、オープンサイエンス実践の好例となっている。細胞ごとの差次的発現遺伝子の可視化には、ドットプロット、ヴァイオリンプロット、次元圧縮の可視化図に重ねる布置プロットなどが頻繁に用いられる(図4)。
など)を用いることができる。scRNA-seqの解析に必要なコードは、scRNA-tools [https://www.scrna-tools.org], Awesome single cell [https://github.com/seandavi/awesome-single-cell], Bioconductor[https://www.bioconductor.org]で紹介されており、ほとんどがダウンロード可能である。また、最新の情報については、bioRxivなどのプレプリントサーバで公開されていることが多く、scRNA-seqのデータ(下記参考)とともに、オープンサイエンス実践の好例となっている。細胞ごとの差次的発現遺伝子の可視化には、ドットプロット、ヴァイオリンプロット、次元圧縮の可視化図に重ねる布置プロットなどが頻繁に用いられる(図4)。
[[ファイル:ScRNAseqFig4.jpg|サムネイル|右]]


===偽時系列解析、遺伝子制御ネットワーク、パスウェイ解析===
===偽時系列解析、遺伝子制御ネットワーク、パスウェイ解析===