16,039
回編集
細 (→距離の計算) |
|||
19行目: | 19行目: | ||
== 距離の計算 == | == 距離の計算 == | ||
コウモリがエコーロケーションから得る情報は多岐にわたるが、最も基本的なものは物体までの距離である。コウモリが音声(パルス)を発し、それが物体へ衝突しエコーとしてコウモリへと戻ってくるまでの伝搬時間t [s]と音速c [m/s]によって、コウモリと物体との距離d [m]は以下のように表される。 | [[ファイル:Hase Echolocation Fig2.png|サムネイル|'''図2. ヒゲコウモリの聴覚野に存在する遅延時間同調細胞の最適遅延時間地図'''<br>(A) ヒゲコウモリの左聴覚野の模式図。図中の数字1-6は異なる機能を持つ神経細胞集団が存在する領野である。<br>(B) FM–FM野内には、異なる倍音の組み合わせに反応する3つの領域FM1–FM2、FM1–FM3、FM1–FM4がある。<br>(C) パルス基本音のFM部(P)とエコー第二高調波のFM部(E)、それらの組み合わせ音を異なる時間差で呈示した際のFM1–FM2ニューロンの発火頻度。それぞれの単独呈示の際の発火頻度に比べ、特定の時間差で提示された際の発火頻度は大きくなる(遅延時間同調)。最適遅延時間は6 msである。参考文献<ref name=Tang2007><pubmed>17670987</pubmed></ref>[19]より (Copyright 2007, Society for Neuroscience)。]] | ||
d= | コウモリがエコーロケーションから得る情報は多岐にわたるが、最も基本的なものは物体までの距離である。コウモリが音声(パルス)を発し、それが物体へ衝突しエコーとしてコウモリへと戻ってくるまでの伝搬時間t [s]と音速c [m/s]によって、コウモリと物体との距離d [m]は以下のように表される。<br> | ||
<math> | |||
d=c\times\frac{t}{2} | |||
</math> | |||
コウモリが距離の計測にパルスとエコーの時間差を用いていることは、1973年にJames Simmonsによって詳細に確かめられた<ref name=Simmons1973><pubmed>4738624</pubmed></ref>[5]。Simmonsは左右2つの着地台のうち近い方へと着地するようにオオクビワコウモリ(Eptesicus fuscus)を訓練し、コウモリが1 cm程度(約60 µs)の距離の差を弁別できることを示した。さらに、台の上で静止するコウモリが発するエコーロケーション音声をマイクロホンで取得し、それを電気的に遅延させてコウモリの左右正面に置いたスピーカ―から異なる遅延時間でそれぞれ再生することでエコーと勘違いさせた。左右のスピーカーから呈示されるエコーの遅延時間が短い方を選択させることで、コウモリが100 µs以下の分解能で時間差を識別できることを明らかにし、距離計測の実態は時間差計測であることを明らかにした。 | コウモリが距離の計測にパルスとエコーの時間差を用いていることは、1973年にJames Simmonsによって詳細に確かめられた<ref name=Simmons1973><pubmed>4738624</pubmed></ref>[5]。Simmonsは左右2つの着地台のうち近い方へと着地するようにオオクビワコウモリ(Eptesicus fuscus)を訓練し、コウモリが1 cm程度(約60 µs)の距離の差を弁別できることを示した。さらに、台の上で静止するコウモリが発するエコーロケーション音声をマイクロホンで取得し、それを電気的に遅延させてコウモリの左右正面に置いたスピーカ―から異なる遅延時間でそれぞれ再生することでエコーと勘違いさせた。左右のスピーカーから呈示されるエコーの遅延時間が短い方を選択させることで、コウモリが100 µs以下の分解能で時間差を識別できることを明らかにし、距離計測の実態は時間差計測であることを明らかにした。 | ||
28行目: | 31行目: | ||
また、複雑な表面を持つ物体は、時間的に重畳したエコーを反射する。例えば、オオクビワコウモリの餌となる飛翔昆虫は羽や頭部といった複数の反射点を持つ。これらは近接して存在するため、100 μs以下の短い時間間隔でエコーを反射する<ref name=Simmons1989><pubmed>2808908</pubmed></ref>[13]。オオクビワコウモリの音声は数msであるため、短い時間間隔での反射音は1つの音に統合され、干渉により時間間隔の逆数に比例する間隔でスペクトルの特定の周波数にノッチを生み出す。オオクビワコウモリの下丘においては、FM音に反応する神経細胞が、ノッチの周波数と最適周波数が一致する際に反応強度を低下させることでノッチ周波数が表現されており、重畳するFM音の最小の時間分解能は約6 μsと推定されている<ref name=Sanderson2000><pubmed>10758096</pubmed></ref> [14]。さらに、オオクビワコウモリの聴覚野に存在する遅延時間同調細胞(詳細は後述)は、ある特定の時間差(6-72 μs)に対応するノッチがエコーに存在する際に、最適遅延時間のパルス・エコー刺激に対する反応よりも大きな反応が得られる<ref name=Sanderson2002><pubmed>12037185</pubmed></ref> [15]。単一神経細胞における時間分解能がせいぜい1 ms、さらにエコーロケーション音声の長さが数msから数十msであることを考えると、高い分解能を示すコウモリの聴覚系での情報処理は非常に興味深い。 | また、複雑な表面を持つ物体は、時間的に重畳したエコーを反射する。例えば、オオクビワコウモリの餌となる飛翔昆虫は羽や頭部といった複数の反射点を持つ。これらは近接して存在するため、100 μs以下の短い時間間隔でエコーを反射する<ref name=Simmons1989><pubmed>2808908</pubmed></ref>[13]。オオクビワコウモリの音声は数msであるため、短い時間間隔での反射音は1つの音に統合され、干渉により時間間隔の逆数に比例する間隔でスペクトルの特定の周波数にノッチを生み出す。オオクビワコウモリの下丘においては、FM音に反応する神経細胞が、ノッチの周波数と最適周波数が一致する際に反応強度を低下させることでノッチ周波数が表現されており、重畳するFM音の最小の時間分解能は約6 μsと推定されている<ref name=Sanderson2000><pubmed>10758096</pubmed></ref> [14]。さらに、オオクビワコウモリの聴覚野に存在する遅延時間同調細胞(詳細は後述)は、ある特定の時間差(6-72 μs)に対応するノッチがエコーに存在する際に、最適遅延時間のパルス・エコー刺激に対する反応よりも大きな反応が得られる<ref name=Sanderson2002><pubmed>12037185</pubmed></ref> [15]。単一神経細胞における時間分解能がせいぜい1 ms、さらにエコーロケーション音声の長さが数msから数十msであることを考えると、高い分解能を示すコウモリの聴覚系での情報処理は非常に興味深い。 | ||
エコーロケーションによる距離計測の神経基盤であると考えられているのは、遅延時間同調細胞(delay-tuned | エコーロケーションによる距離計測の神経基盤であると考えられているのは、遅延時間同調細胞(delay-tuned neuron)である。遅延時間同調細胞とは、パルスとエコーのような2音を連続で呈示された際に、2音間の特定の時間差に選択的に反応の促進を示す神経細胞で('''図2''')<ref name=Sullivan1982a><pubmed>7143030</pubmed></ref> | ||
<ref name=Suga1983><pubmed>6875639</pubmed></ref>[16,17]、下丘や内側膝状体、聴覚野などの聴覚系や、上丘で発見されている。特に、聴覚野には最適遅延時間(最も強い反応が誘発される遅延時間)の地図構造が存在し、最適遅延時間の短い神経細胞が吻側に、長いものが尾側に存在する <ref name=Kossl2014><pubmed>24492081</pubmed></ref>[18]。 | <ref name=Suga1983><pubmed>6875639</pubmed></ref>[16,17]、下丘や内側膝状体、聴覚野などの聴覚系や、上丘で発見されている。特に、聴覚野には最適遅延時間(最も強い反応が誘発される遅延時間)の地図構造が存在し、最適遅延時間の短い神経細胞が吻側に、長いものが尾側に存在する <ref name=Kossl2014><pubmed>24492081</pubmed></ref>[18]。 | ||
下丘や聴覚野の神経細胞の一部は、通常の聴覚系の神経細胞とは異なり、刺激強度が増加するにつれて反応潜時が長くなる、paradoxical latency shift (PLS)を示す<ref name=Sullivan1982><pubmed>7143031</pubmed></ref>[20]。PLSは抑制性入力の閾値が興奮性入力の閾値よりも高く、刺激レベルが高くなるにつれ興奮に対する抑制の強度が強くなることによって生じるとされている。 | 下丘や聴覚野の神経細胞の一部は、通常の聴覚系の神経細胞とは異なり、刺激強度が増加するにつれて反応潜時が長くなる、paradoxical latency shift (PLS)を示す<ref name=Sullivan1982><pubmed>7143031</pubmed></ref>[20]。PLSは抑制性入力の閾値が興奮性入力の閾値よりも高く、刺激レベルが高くなるにつれ興奮に対する抑制の強度が強くなることによって生じるとされている。 |