「Test」の版間の差分

提供: 脳科学辞典
ナビゲーションに移動 検索に移動
編集の要約なし
タグ: 差し戻し済み
編集の要約なし
 
(同じ利用者による、間の5版が非表示)
1行目: 1行目:
{| class="wikitable" style="width:80%"
<ref name=Krapp1996><pubmed>8861960</pubmed></ref>
|+ 内因性オピオイドペプチドとその受容体
<ref name=Knoefler1996><pubmed>8703005</pubmed></ref>
|-
<ref name=Rose2001><pubmed>11562365</pubmed></ref>
! scope="col" | オピオイドペプチド
<ref name=Krapp1998><pubmed>9851981</pubmed></ref>
! scope="col" | [[アミノ酸配列]]
<ref name=Kawaguchi2002><pubmed>12185368</pubmed></ref>
! scope="col" | [[オピオイド受容体]] 標的
<ref name=Sellick2004><pubmed>15543146</pubmed></ref>
! scope="col" | <small>参考文献</small>
<ref name=Sellick2003><pubmed>14514650</pubmed></ref>
|-
<ref name=Hoveyda1999><pubmed>10507728</pubmed></ref>
! scope="col" colspan="1" | [[エンケファリン]]
<ref name=Masui2008><pubmed>18606784</pubmed></ref>
! scope="col" colspan="3" |
<ref name=Pan2013><pubmed>23325761</pubmed></ref>
|-
<ref name=Burlison2008><pubmed>18294628</pubmed></ref>
| [[ロイ-エンケファリン]] || YGGFL || [[δ-オピオイド受容体]]<sup></sup>、[[μ-オピオイド受容体]]<sup></sup> || <ref name="Endogenous opioid families - 2012 review">{{cite journal | vauthors = Li Y, Lefever MR, Muthu D, Bidlack JM, Bilsky EJ, Polt R | title = Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins | journal = [[Future Medicinal Chemistry]] | volume = 4 | issue = 2 | pages = 205–226 | date = February 2012 | pmid = 22300099 | pmc = 3306179 | doi = 10.4155/fmc.11.195 | postscript = ,}} in particular [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306179/table/T1/ Table 1: Endogenous opioid peptides].</ref><ref name="IUPHAR Opioid receptors - Introduction">{{cite web | title=Opioid receptors: Introduction | url=http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=50 | work= IUPHAR/BPS Guide to PHARMACOLOGY | publisher=International Union of Basic and Clinical Pharmacology | vauthors = Toll L, Caló G, Cox BM, Chavkin C, Christie MJ, Civelli O, Connor M, Devi LA, Evans C, Henderson G, Höllt V, Kieffer B, Kitchen I, Kreek MJ, Liu-Chen LY, Meunier JC, Portoghese PS, Shippenberg TS, Simon EJ, Traynor JR, Ueda H, Wong YH | access-date = 20 October 2017 | date=10 August 2015 }}</ref><ref name="IUPHAR - δ-opioid receptor" />
<ref name=AlShammari2011><pubmed>21749365</pubmed></ref>
|-
<ref name=Adell2000><pubmed>10768861</pubmed></ref>
| [[メチオニン-エンケファリン]] || YGGFM || [[δ-オピオイド受容体]]<sup></sup>、[[μ-オピオイド受容体]]<sup></sup> || <ref name="Endogenous opioid families - 2012 review" /><ref name="IUPHAR Opioid receptors - Introduction" /><ref name="IUPHAR - δ-opioid receptor" />
<ref name=Masui2007><pubmed>17938243</pubmed></ref>
|-
<ref name=Magnuson2013><pubmed>23823474</pubmed></ref>
| [[メトルファミド]] || YGGFMRRV-NH<sub>2</sub> || [[δ-オピオイド受容体]]、[[μ-オピオイド受容体]] || <ref name="Endogenous opioid families - 2012 review" />
<ref name=Fujitani2017><pubmed>28420858</pubmed></ref>
|-
<ref name=VeiteSchmahl2017><pubmed>28697176</pubmed></ref>
| [[ペプチドE]] || YGGFMRRVGRPEWWMDYQKRYGGFL || [[μ-オピオイド受容体]]、[[κ-オピオイド受容体]] || <ref name="Endogenous opioid families - 2012 review" />
<ref name=Hingorani2003><pubmed>14706336</pubmed></ref>
|-
<ref name=Obata2001><pubmed>11318877</pubmed></ref>
! scope="col" colspan="1" | [[エンドルフィン]]
<ref name=Hoshino2005><pubmed>16039563</pubmed></ref>
! scope="col" colspan="3" |
<ref name=Hoshino2006><pubmed>16997750</pubmed></ref>
|-
<ref name=Wullimann2011><pubmed>21559349</pubmed></ref>
| [[α-エンドルフィン]] || YGGFMTSEKSQTPLVT || [[μ-オピオイド受容体]]、他のオピオイド受容体への親和性は不明 || <ref name="Endogenous opioid families - 2012 review" />
<ref name=Yamada2014><pubmed>24695699</pubmed></ref>
|-
<ref name=Seto2014><pubmed>24535035</pubmed></ref>
| [[β-エンドルフィン]] || YGGFMTSEKSQTPLVTLFKNAIIKNAYKKGE || [[μ-オピオイド受容体]]<sup>†‡</sup>、[[δ-オピオイド受容体]]<sup></sup> || <ref name="Endogenous opioid families - 2012 review" /><ref name="IUPHAR Opioid receptors - Introduction" /><ref name="IUPHAR - δ-opioid receptor">{{cite web | title=δ receptor|url=http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=317 | work= IUPHAR/BPS Guide to PHARMACOLOGY | publisher=International Union of Basic and Clinical Pharmacology | access-date= 28 December 2017 | date=15 May 2017 | quote = Principal endogenous agonists (Human) [are]<br />β-endorphin (POMC, P01189), [Leu]enkephalin (PENK, P01210), [Met]enkephalin (PENK, P01210)}}</ref><ref name="IUPHAR - μ-opioid receptor">{{cite web | title=μ receptor|url=http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=319 | work= IUPHAR/BPS Guide to PHARMACOLOGY | publisher=International Union of Basic and Clinical Pharmacology | access-date= 28 December 2017 | date=15 March 2017 | quote = Comments: β-Endorphin is the highest potency endogenous ligand&nbsp;...<br />Morphine occurs endogenously ([[#Poeaknapo|Poeaknapo et. al. 2004]])&nbsp;...<br />Principal endogenous agonists (Human) [are]<br />β-endorphin (POMC, P01189), [Met]enkephalin (PENK, P01210), [Leu]enkephalin (PENK, P01210)}}, citing:
<ref name=Pascual2007><pubmed>17360405</pubmed></ref>
* {{cite journal | vauthors = Poeaknapo C, Schmidt J, Brandsch M, Dräger B, Zenk MH | year = 2004 | title = Endogenous formation of morphine in human cells | journal = Proc. Natl. Acad. Sci. USA | volume = 101 | issue = 39 | pages = 14091–6 | doi = 10.1073/pnas.0405430101 | doi-access = free | pmc = 521124 | pmid = 15383669 | bibcode = 2004PNAS..10114091P | ref = Poeaknapo}}
<ref name=Millen2008><pubmed>18513948</pubmed></ref>
</ref>
<ref name=Achim2014><pubmed>24196748</pubmed></ref>
|-
<ref name=Lowenstein2023><pubmed>35262281</pubmed></ref>
| [[γ-エンドルフィン]] || YGGFMTSEKSQTPLVTL || [[μ-オピオイド受容体]]、他のオピオイド受容体への親和性は不明 || <ref name="Endogenous opioid families - 2012 review" />
<ref name=BenArie1997><pubmed>9367153</pubmed></ref>
|-
<ref name=Machold2005><pubmed>16202705</pubmed></ref>
! scope="col" colspan="1" | [[ダイノルフィン]]
<ref name=Wang2005><pubmed>16202707</pubmed></ref>
! scope="col" colspan="3" |
<ref name=Glasgow2005><pubmed>16291784</pubmed></ref>
|-
<ref name=Hori2012><pubmed>22830054</pubmed></ref>
| [[ダイノルフィンA]] || YGGFLRRIRPKLKWDNQ || [[κ-オピオイド受容体]]<sup>†‡</sup> || <ref name="Endogenous opioid families - 2012 review" /><ref name="IUPHAR Opioid receptors - Introduction" /><ref name="IUPHAR - κ-opioid receptor" />
<ref name=Fujitani2006><pubmed>17075007</pubmed></ref>
|-
<ref name=Nakhai2007><pubmed>17301087</pubmed></ref>
| [[ダイノルフィンA<sub>1–8</sub>]] || YGGFLRRI || [[κ-オピオイド受容体]]、[[μ-オピオイド受容体]]([[δ-オピオイド受容体]]に対して部分アゴニスト) || <ref name="HMDB Dynorphin A 1-8">{{cite encyclopedia | title=Dynorphin A 1–8 | url=http://www.hmdb.ca/metabolites/HMDB0012933 | encyclopedia=HMDB Version&nbsp;4.0 | publisher=Human Metabolome Database | access-date=20 October 2017 | date=27 September 2017 | quote = Dynorphin A (1–8) is a fraction of Dynorphin A with only Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile peptide chain.}}</ref><ref name="IUPHAR - Dynorphin A-(1-8) - Biological activity">{{cite web | title=Dynorphin A-(1–8): Biological activity | url=http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=1621 | work= IUPHAR/BPS Guide to PHARMACOLOGY | publisher=International Union of Basic and Clinical Pharmacology | access-date= 20 October 2017 }}</ref>
<ref name=Dullin2007><pubmed>17910758</pubmed></ref>
|-
<ref name=Fujiyama2009><pubmed>19439493</pubmed></ref>
| [[ダイノルフィンB]] || YGGFLRRQFKVVT || [[κ-オピオイド受容体]] || <ref name="Endogenous opioid families - 2012 review" /><ref name="IUPHAR Opioid receptors - Introduction" />
<ref name=Yamada2007><pubmed>17928434</pubmed></ref>
|-
<ref name=Aldinger2008><pubmed>18184775</pubmed></ref>
| [[ビッグダイノルフィン]] || YGGFLRRIRPKLKWDNQKRYGGFLRRQFKVVT || [[κ-オピオイド受容体]]<sup>†‡</sup> || <ref name="IUPHAR - κ-opioid receptor">{{cite web | title=κ receptor|url=http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=318 | work= IUPHAR/BPS Guide to PHARMACOLOGY | publisher=International Union of Basic and Clinical Pharmacology | access-date= 28 December 2017 | date=21 February 2017 | quote = Comments: Dynorphin A and big dynorphin are the highest potency endogenous ligands&nbsp;...<br />Principal endogenous agonists (Human) [are]<br />big dynorphin (PDYN, P01213), dynorphin A (PDYN, P01213)}}</ref><ref name="IUPHAR - Big dynorphin - Biological activity">{{cite web | title=Big dynorphin: Biological activity|url=http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=3669 | work= IUPHAR/BPS Guide to PHARMACOLOGY | publisher=International Union of Basic and Clinical Pharmacology | access-date= 20 October 2017 | quote = Principal endogenous agonists at κ receptor}}.</ref><ref name="IUPHAR - Big dynorphin - Structure">{{cite web | title=Big dynorphin: Structure&nbsp;– Peptide Sequence | url=http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=structure&ligandId=3669 | work= IUPHAR/BPS Guide to PHARMACOLOGY | publisher=International Union of Basic and Clinical Pharmacology | access-date= 20 October 2017 | quote = Peptide sequence<br />YGGFLRRIRPKLKWDNQKRYGGFLRRQFKVVT}}</ref>
<ref name=Fujiyama2018><pubmed>29972793</pubmed></ref>
|-
<ref name=Horie2018><pubmed>30228204</pubmed></ref>
| [[リューモルフィン]] || YGGFLRRQFKVVTRSQEDPNAYYEELFDV || [[κ-オピオイド受容体]] || <ref name="Dynorphins 2009 review">{{cite journal | vauthors = Schwarzer C | title = 30 years of dynorphins—new insights on their functions in neuropsychiatric diseases | journal = Pharmacology & Therapeutics | volume = 123 | issue = 3 | pages = 353–370 | date = September 2009 | pmid = 19481570 | pmc = 2872771 | doi = 10.1016/j.pharmthera.2009.05.006 }}</ref><ref name="PubChem - Leumorphin">{{cite encyclopedia | title=Dynorphin B (1-29) | url = https://pubchem.ncbi.nlm.nih.gov/compound/16131065 | encyclopedia=PubChem Compound | publisher=United States National Library of Medicine&nbsp;– National Center for Biotechnology Information | access-date=28 December 2017 | date=23 December 2017}}</ref><ref name="Leumorphin primary 1">{{cite journal | vauthors = Suda M, Nakao K, Yoshimasa T, Sakamoto M, Morii N, Ikeda Y, Yanaihara C, Yanaihara N, Numa S, Imura H | title = Human leumorphin is a potent, kappa opioid receptor agonist | journal = Neuroscience Letters | volume = 50 | issue = 1–3 | pages = 49–52 | date = September 1984 | pmid = 6149506 | doi = 10.1016/0304-3940(84)90460-9 | s2cid = 42419724 }}</ref><ref name="Leumorphin primary 2">{{cite journal | vauthors = Inenaga K, Nagatomo T, Nakao K, Yanaihara N, Yamashita H | title = Kappa-selective agonists decrease postsynaptic potentials and calcium components of action potentials in the supraoptic nucleus of rat hypothalamus in vitro | journal = Neuroscience | volume = 58 | issue = 2 | pages = 331–340 | date = January 1994 | pmid = 7908725 | doi = 10.1016/0306-4522(94)90039-6| s2cid = 24631286 }}</ref>
<ref name=Russ2015><pubmed>25878276</pubmed></ref>
|-
<ref name=Uhlen2015><pubmed>25613900</pubmed></ref>
| [[α-ネオエンドルフィン]] || YGGFLRKYPK || [[κ-オピオイド受容体]] || <ref name="Endogenous opioid families - 2012 review" /><ref name="IUPHAR Opioid receptors - Introduction" />
<ref name=Duque2022><pubmed>34125483</pubmed></ref>
|-
<ref name=Beres2006><pubmed>16354684</pubmed></ref>
| [[β-ネオエンドルフィン]] || YGGFLRKYP || [[κ-オピオイド受容体]] || <ref name="Endogenous opioid families - 2012 review" />
<ref name=Masui2010><pubmed>20398665</pubmed></ref>
|-
<ref name=Hori2008><pubmed>18198335</pubmed></ref>
! scope="col" colspan="1" | [[ノシセプチン]]
<ref name=Lelievre2011><pubmed>21839069</pubmed></ref>
! scope="col" colspan="3" |
<ref name=Hanoun2014><pubmed>25355311</pubmed></ref>
|-
<ref name=Rodolosse2009><pubmed>18834332</pubmed></ref>
| [[ノシセプチン]] || FGGFTGARKSARKLANQ || [[ノシセプチン受容体]]<sup>†‡</sup> || <ref name="Endogenous opioid families - 2012 review" /><ref name="IUPHAR Opioid receptors - Introduction" /><ref name="IUPHAR - nociceptin receptor">{{cite web | title=NOP receptor|url=http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=320 | work= IUPHAR/BPS Guide to PHARMACOLOGY | publisher=International Union of Basic and Clinical Pharmacology | access-date= 28 December 2017 | date=18 August 2017 | quote = Natural/Endogenous Ligands<br />nociceptin/orphanin FQ}}</ref>
<ref name=Jin2019><pubmed>30470852</pubmed></ref>
|-
<ref name=Hanotel2014><pubmed>24370451</pubmed></ref>
! scope="col" colspan="1" | [[エンドモルフィン]]
<ref name=Whittaker2021><pubmed>34730112</pubmed></ref>
! scope="col" colspan="3" |
<ref name=Chang2013><pubmed>23639443</pubmed></ref>
|-
<ref name=Watanabe2015><pubmed>25995483</pubmed></ref>
| [[エンドモルフィン-1]] || YPWF-NH<sub>2</sub> || [[μ-オピオイド受容体]] || <ref name="Endogenous opioid families - 2012 review" /><ref name="IUPHAR Opioid receptors - Introduction" />
<ref name=Jin2015><pubmed>25966682</pubmed></ref>
|-
<ref name=Nishida2010><pubmed>19887377</pubmed></ref>
| [[エンドモルフィン-2]] || YPFF-NH<sub>2</sub> || [[μ-オピオイド受容体]] || <ref name="Endogenous opioid families - 2012 review" /><ref name="IUPHAR Opioid receptors - Introduction" />
<ref name=Henke2009><pubmed>19641016</pubmed></ref>
|-
<ref name=Wiebe2007><pubmed>17403901</pubmed></ref>
! scope="col" colspan="4" style="text-align:left" | <sup></sup> この記号は、そのペプチドがヒトにおいて当該受容体の主要な内因性アゴニストであることを示す。<br /><sup></sup> この記号は、そのペプチドがヒトにおいて当該受容体に対して最も高い既知の[[効力 (薬理学)|効力]]を持つ内因性リガンドであることを示す。
<ref name=Meredith2013><pubmed>23754747</pubmed></ref>
|}
<ref name=Schaffer2010><pubmed>20627083</pubmed></ref>
<ref name=AhnfeltRonne2012><pubmed>22096075</pubmed></ref>
<ref name=Mona2016><pubmed>27350561</pubmed></ref>
<ref name=Meredith2009><pubmed>19741120</pubmed></ref>
<ref name=Liu2013><pubmed>23652001</pubmed></ref>
<ref name=Ito2023><pubmed>37248264</pubmed></ref>
<ref name=Millen2014><pubmed>24733890</pubmed></ref>
<ref name=Huang2008><pubmed>18634777</pubmed></ref>
<ref name=Bikoff2016><pubmed>26949184</pubmed></ref>
<ref name=Zhang2017><pubmed>29045835</pubmed></ref>
<ref name=Escalante2020><pubmed>33238109</pubmed></ref>
<ref name=Jusuf2009><pubmed>19732413</pubmed></ref>
<ref name=Jusuf2011><pubmed>21325522</pubmed></ref>
<ref name=Mazurier2014><pubmed>24643195</pubmed></ref>
<ref name=Bessodes2017><pubmed>28863786</pubmed></ref>
<ref name=RazyKrajka2012><pubmed>22642675</pubmed></ref>
<ref name=Maricich2009><pubmed>19741118</pubmed></ref>
<ref name=Bae2009><pubmed>19371731</pubmed></ref>
<ref name=Elliott2023><pubmed>37055006</pubmed></ref>
<ref name=Iskusnykh2016><pubmed>26937009</pubmed></ref>
<ref name=Kohl2012><pubmed>22539838</pubmed></ref>
<ref name=Fukuda2008><pubmed>18591390</pubmed></ref>
<ref name=Sakikubo2018><pubmed>30361559</pubmed></ref>

2025年10月5日 (日) 12:12時点における最新版

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83]

  1. Krapp, A., Knöfler, M., Frutiger, S., Hughes, G.J., Hagenbüchle, O., & Wellauer, P.K. (1996).
    The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein. The EMBO journal, 15(16), 4317-29. [PubMed:8861960] [PMC] [WorldCat]
  2. Knöfler, M., Krapp, A., Hagenbüchle, O., & Wellauer, P.K. (1996).
    Constitutive expression of the gene for the cell-specific p48 DNA-binding subunit of pancreas transcription factor 1 in cultured cells is under control of binding sites for transcription factors Sp1 and alphaCbf. The Journal of biological chemistry, 271(36), 21993-2002. [PubMed:8703005] [WorldCat] [DOI]
  3. Rose, S.D., Swift, G.H., Peyton, M.J., Hammer, R.E., & MacDonald, R.J. (2001).
    The role of PTF1-P48 in pancreatic acinar gene expression. The Journal of biological chemistry, 276(47), 44018-26. [PubMed:11562365] [WorldCat] [DOI]
  4. Krapp, A., Knöfler, M., Ledermann, B., Bürki, K., Berney, C., Zoerkler, N., ..., & Wellauer, P.K. (1998).
    The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes & development, 12(23), 3752-63. [PubMed:9851981] [PMC] [WorldCat] [DOI]
  5. Kawaguchi, Y., Cooper, B., Gannon, M., Ray, M., MacDonald, R.J., & Wright, C.V. (2002).
    The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nature genetics, 32(1), 128-34. [PubMed:12185368] [WorldCat] [DOI]
  6. Sellick, G.S., Barker, K.T., Stolte-Dijkstra, I., Fleischmann, C., Coleman, R.J., Garrett, C., ..., & Houlston, R.S. (2004).
    Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nature genetics, 36(12), 1301-5. [PubMed:15543146] [WorldCat] [DOI]
  7. Sellick, G.S., Garrett, C., & Houlston, R.S. (2003).
    A novel gene for neonatal diabetes maps to chromosome 10p12.1-p13. Diabetes, 52(10), 2636-8. [PubMed:14514650] [WorldCat] [DOI]
  8. Hoveyda, N., Shield, J.P., Garrett, C., Chong, W.K., Beardsall, K., Bentsi-Enchill, E., ..., & Thompson, M.H. (1999).
    Neonatal diabetes mellitus and cerebellar hypoplasia/agenesis: report of a new recessive syndrome. Journal of medical genetics, 36(9), 700-4. [PubMed:10507728] [PMC] [WorldCat]
  9. Masui, T., Swift, G.H., Hale, M.A., Meredith, D.M., Johnson, J.E., & Macdonald, R.J. (2008).
    Transcriptional autoregulation controls pancreatic Ptf1a expression during development and adulthood. Molecular and cellular biology, 28(17), 5458-68. [PubMed:18606784] [PMC] [WorldCat] [DOI]
  10. Pan, F.C., Bankaitis, E.D., Boyer, D., Xu, X., Van de Casteele, M., Magnuson, M.A., ..., & Wright, C.V. (2013).
    Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development (Cambridge, England), 140(4), 751-64. [PubMed:23325761] [PMC] [WorldCat] [DOI]
  11. Burlison, J.S., Long, Q., Fujitani, Y., Wright, C.V., & Magnuson, M.A. (2008).
    Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells. Developmental biology, 316(1), 74-86. [PubMed:18294628] [PMC] [WorldCat] [DOI]
  12. Al-Shammari, M., Al-Husain, M., Al-Kharfy, T., & Alkuraya, F.S. (2011).
    A novel PTF1A mutation in a patient with severe pancreatic and cerebellar involvement. Clinical genetics, 80(2), 196-8. [PubMed:21749365] [WorldCat] [DOI]
  13. Adell, T., Gómez-Cuadrado, A., Skoudy, A., Pettengill, O.S., Longnecker, D.S., & Real, F.X. (2000).
    Role of the basic helix-loop-helix transcription factor p48 in the differentiation phenotype of exocrine pancreas cancer cells. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research, 11(3), 137-47. [PubMed:10768861] [WorldCat]
  14. Masui, T., Long, Q., Beres, T.M., Magnuson, M.A., & MacDonald, R.J. (2007).
    Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex. Genes & development, 21(20), 2629-43. [PubMed:17938243] [PMC] [WorldCat] [DOI]
  15. Magnuson, M.A., & Osipovich, A.B. (2013).
    Pancreas-specific Cre driver lines and considerations for their prudent use. Cell metabolism, 18(1), 9-20. [PubMed:23823474] [PMC] [WorldCat] [DOI]
  16. Fujitani, Y. (2017).
    Transcriptional regulation of pancreas development and β-cell function [Review]. Endocrine journal, 64(5), 477-486. [PubMed:28420858] [WorldCat] [DOI]
  17. Veite-Schmahl, M.J., Joesten, W.C., & Kennedy, M.A. (2017).
    HMGA1 expression levels are elevated in pancreatic intraepithelial neoplasia cells in the Ptf1a-Cre; LSL-KrasG12D transgenic mouse model of pancreatic cancer. British journal of cancer, 117(5), 639-647. [PubMed:28697176] [PMC] [WorldCat] [DOI]
  18. Hingorani, S.R., Petricoin, E.F., Maitra, A., Rajapakse, V., King, C., Jacobetz, M.A., ..., & Tuveson, D.A. (2003).
    Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer cell, 4(6), 437-50. [PubMed:14706336] [WorldCat] [DOI]
  19. Obata, J., Yano, M., Mimura, H., Goto, T., Nakayama, R., Mibu, Y., ..., & Kawaichi, M. (2001).
    p48 subunit of mouse PTF1 binds to RBP-Jkappa/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos. Genes to cells : devoted to molecular & cellular mechanisms, 6(4), 345-60. [PubMed:11318877] [WorldCat] [DOI]
  20. Hoshino, M., Nakamura, S., Mori, K., Kawauchi, T., Terao, M., Nishimura, Y.V., ..., & Nabeshima, Y. (2005).
    Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron, 47(2), 201-13. [PubMed:16039563] [WorldCat] [DOI]
  21. Hoshino, M. (2006).
    Molecular machinery governing GABAergic neuron specification in the cerebellum. Cerebellum (London, England), 5(3), 193-8. [PubMed:16997750] [WorldCat] [DOI]
  22. Wullimann, M.F., Mueller, T., Distel, M., Babaryka, A., Grothe, B., & Köster, R.W. (2011).
    The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis. Frontiers in neuroanatomy, 5, 27. [PubMed:21559349] [PMC] [WorldCat] [DOI]
  23. Yamada, M., Seto, Y., Taya, S., Owa, T., Inoue, Y.U., Inoue, T., ..., & Hoshino, M. (2014).
    Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience, 34(14), 4786-800. [PubMed:24695699] [PMC] [WorldCat] [DOI]
  24. Seto, Y., Nakatani, T., Masuyama, N., Taya, S., Kumai, M., Minaki, Y., ..., & Hoshino, M. (2014).
    Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nature communications, 5, 3337. [PubMed:24535035] [PMC] [WorldCat] [DOI]
  25. Pascual, M., Abasolo, I., Mingorance-Le Meur, A., Martínez, A., Del Rio, J.A., Wright, C.V., ..., & Soriano, E. (2007).
    Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proceedings of the National Academy of Sciences of the United States of America, 104(12), 5193-8. [PubMed:17360405] [PMC] [WorldCat] [DOI]
  26. Millen, K.J., & Gleeson, J.G. (2008).
    Cerebellar development and disease. Current opinion in neurobiology, 18(1), 12-9. [PubMed:18513948] [PMC] [WorldCat] [DOI]
  27. Achim, K., Salminen, M., & Partanen, J. (2014).
    Mechanisms regulating GABAergic neuron development. Cellular and molecular life sciences : CMLS, 71(8), 1395-415. [PubMed:24196748] [PMC] [WorldCat] [DOI]
  28. Lowenstein, E.D., Cui, K., & Hernandez-Miranda, L.R. (2023).
    Regulation of early cerebellar development. The FEBS journal, 290(11), 2786-2804. [PubMed:35262281] [WorldCat] [DOI]
  29. Ben-Arie, N., Bellen, H.J., Armstrong, D.L., McCall, A.E., Gordadze, P.R., Guo, Q., ..., & Zoghbi, H.Y. (1997).
    Math1 is essential for genesis of cerebellar granule neurons. Nature, 390(6656), 169-72. [PubMed:9367153] [WorldCat] [DOI]
  30. Machold, R., & Fishell, G. (2005).
    Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron, 48(1), 17-24. [PubMed:16202705] [WorldCat] [DOI]
  31. Wang, V.Y., Rose, M.F., & Zoghbi, H.Y. (2005).
    Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron, 48(1), 31-43. [PubMed:16202707] [WorldCat] [DOI]
  32. Glasgow, S.M., Henke, R.M., Macdonald, R.J., Wright, C.V., & Johnson, J.E. (2005).
    Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development (Cambridge, England), 132(24), 5461-9. [PubMed:16291784] [WorldCat] [DOI]
  33. Hori, K., & Hoshino, M. (2012).
    GABAergic neuron specification in the spinal cord, the cerebellum, and the cochlear nucleus. Neural plasticity, 2012, 921732. [PubMed:22830054] [PMC] [WorldCat] [DOI]
  34. Fujitani, Y., Fujitani, S., Luo, H., Qiu, F., Burlison, J., Long, Q., ..., & Wright, C.V. (2006).
    Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development (Cambridge, England), 133(22), 4439-50. [PubMed:17075007] [WorldCat] [DOI]
  35. Nakhai, H., Sel, S., Favor, J., Mendoza-Torres, L., Paulsen, F., Duncker, G.I., & Schmid, R.M. (2007).
    Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development (Cambridge, England), 134(6), 1151-60. [PubMed:17301087] [WorldCat] [DOI]
  36. Dullin, J.P., Locker, M., Robach, M., Henningfeld, K.A., Parain, K., Afelik, S., ..., & Perron, M. (2007).
    Ptf1a triggers GABAergic neuronal cell fates in the retina. BMC developmental biology, 7, 110. [PubMed:17910758] [PMC] [WorldCat] [DOI]
  37. Fujiyama, T., Yamada, M., Terao, M., Terashima, T., Hioki, H., Inoue, Y.U., ..., & Hoshino, M. (2009).
    Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. Development (Cambridge, England), 136(12), 2049-58. [PubMed:19439493] [WorldCat] [DOI]
  38. Yamada, M., Terao, M., Terashima, T., Fujiyama, T., Kawaguchi, Y., Nabeshima, Y., & Hoshino, M. (2007).
    Origin of climbing fiber neurons and their developmental dependence on Ptf1a. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(41), 10924-34. [PubMed:17928434] [PMC] [WorldCat] [DOI]
  39. Aldinger, K.A., & Elsen, G.E. (2008).
    Ptf1a is a molecular determinant for both glutamatergic and GABAergic neurons in the hindbrain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(2), 338-9. [PubMed:18184775] [PMC] [WorldCat] [DOI]
  40. Fujiyama, T., Miyashita, S., Tsuneoka, Y., Kanemaru, K., Kakizaki, M., Kanno, S., ..., & Hoshino, M. (2018).
    Forebrain Ptf1a Is Required for Sexual Differentiation of the Brain. Cell reports, 24(1), 79-94. [PubMed:29972793] [WorldCat] [DOI]
  41. Horie, T., Horie, R., Chen, K., Cao, C., Nakagawa, M., Kusakabe, T.G., ..., & Levine, M. (2018).
    Regulatory cocktail for dopaminergic neurons in a protovertebrate identified by whole-embryo single-cell transcriptomics. Genes & development, 32(19-20), 1297-1302. [PubMed:30228204] [PMC] [WorldCat] [DOI]
  42. Russ, J.B., Borromeo, M.D., Kollipara, R.K., Bommareddy, P.K., Johnson, J.E., & Kaltschmidt, J.A. (2015).
    Misexpression of ptf1a in cortical pyramidal cells in vivo promotes an inhibitory peptidergic identity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 35(15), 6028-37. [PubMed:25878276] [PMC] [WorldCat] [DOI]
  43. Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., ..., & Pontén, F. (2015).
    Proteomics. Tissue-based map of the human proteome. Science (New York, N.Y.), 347(6220), 1260419. [PubMed:25613900] [WorldCat] [DOI]
  44. Duque, M., Amorim, J.P., & Bessa, J. (2022).
    Ptf1a function and transcriptional cis-regulation, a cornerstone in vertebrate pancreas development. The FEBS journal, 289(17), 5121-5136. [PubMed:34125483] [PMC] [WorldCat] [DOI]
  45. Beres, T.M., Masui, T., Swift, G.H., Shi, L., Henke, R.M., & MacDonald, R.J. (2006).
    PTF1 is an organ-specific and Notch-independent basic helix-loop-helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. Molecular and cellular biology, 26(1), 117-30. [PubMed:16354684] [PMC] [WorldCat] [DOI]
  46. Masui, T., Swift, G.H., Deering, T., Shen, C., Coats, W.S., Long, Q., ..., & MacDonald, R.J. (2010).
    Replacement of Rbpj with Rbpjl in the PTF1 complex controls the final maturation of pancreatic acinar cells. Gastroenterology, 139(1), 270-80. [PubMed:20398665] [PMC] [WorldCat] [DOI]
  47. Hori, K., Cholewa-Waclaw, J., Nakada, Y., Glasgow, S.M., Masui, T., Henke, R.M., ..., & Johnson, J.E. (2008).
    A nonclassical bHLH Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling. Genes & development, 22(2), 166-78. [PubMed:18198335] [PMC] [WorldCat] [DOI]
  48. Lelièvre, E.C., Lek, M., Boije, H., Houille-Vernes, L., Brajeul, V., Slembrouck, A., ..., & Guillonneau, X. (2011).
    Ptf1a/Rbpj complex inhibits ganglion cell fate and drives the specification of all horizontal cell subtypes in the chick retina. Developmental biology, 358(2), 296-308. [PubMed:21839069] [WorldCat] [DOI]
  49. Hanoun, N., Fritsch, S., Gayet, O., Gigoux, V., Cordelier, P., Dusetti, N., ..., & Dufresne, M. (2014).
    The E3 ubiquitin ligase thyroid hormone receptor-interacting protein 12 targets pancreas transcription factor 1a for proteasomal degradation. The Journal of biological chemistry, 289(51), 35593-604. [PubMed:25355311] [PMC] [WorldCat] [DOI]
  50. Rodolosse, A., Campos, M.L., Rooman, I., Lichtenstein, M., & Real, F.X. (2009).
    p/CAF modulates the activity of the transcription factor p48/Ptf1a involved in pancreatic acinar differentiation. The Biochemical journal, 418(2), 463-73. [PubMed:18834332] [WorldCat] [DOI]
  51. Jin, K., & Xiang, M. (2019).
    Transcription factor Ptf1a in development, diseases and reprogramming. Cellular and molecular life sciences : CMLS, 76(5), 921-940. [PubMed:30470852] [PMC] [WorldCat] [DOI]
  52. Hanotel, J., Bessodes, N., Thélie, A., Hedderich, M., Parain, K., Van Driessche, B., ..., & Bellefroid, E.J. (2014).
    The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. Developmental biology, 386(2), 340-57. [PubMed:24370451] [WorldCat] [DOI]
  53. Whittaker, D.E., Oleari, R., Gregory, L.C., Le Quesne-Stabej, P., Williams, H.J., GOSgene, ..., & Dattani, M.T. (2021).
    A recessive PRDM13 mutation results in congenital hypogonadotropic hypogonadism and cerebellar hypoplasia. The Journal of clinical investigation, 131(24). [PubMed:34730112] [PMC] [WorldCat] [DOI]
  54. Chang, J.C., Meredith, D.M., Mayer, P.R., Borromeo, M.D., Lai, H.C., Ou, Y.H., & Johnson, J.E. (2013).
    Prdm13 mediates the balance of inhibitory and excitatory neurons in somatosensory circuits. Developmental cell, 25(2), 182-95. [PubMed:23639443] [PMC] [WorldCat] [DOI]
  55. Watanabe, S., Sanuki, R., Sugita, Y., Imai, W., Yamazaki, R., Kozuka, T., ..., & Furukawa, T. (2015).
    Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 35(20), 8004-20. [PubMed:25995483] [PMC] [WorldCat] [DOI]
  56. Jin, K., Jiang, H., Xiao, D., Zou, M., Zhu, J., & Xiang, M. (2015).
    Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Molecular brain, 8, 28. [PubMed:25966682] [PMC] [WorldCat] [DOI]
  57. Nishida, K., Hoshino, M., Kawaguchi, Y., & Murakami, F. (2010).
    Ptf1a directly controls expression of immunoglobulin superfamily molecules Nephrin and Neph3 in the developing central nervous system. The Journal of biological chemistry, 285(1), 373-80. [PubMed:19887377] [PMC] [WorldCat] [DOI]
  58. Henke, R.M., Savage, T.K., Meredith, D.M., Glasgow, S.M., Hori, K., Dumas, J., ..., & Johnson, J.E. (2009).
    Neurog2 is a direct downstream target of the Ptf1a-Rbpj transcription complex in dorsal spinal cord. Development (Cambridge, England), 136(17), 2945-54. [PubMed:19641016] [PMC] [WorldCat] [DOI]
  59. Wiebe, P.O., Kormish, J.D., Roper, V.T., Fujitani, Y., Alston, N.I., Zaret, K.S., ..., & Gannon, M. (2007).
    Ptf1a binds to and activates area III, a highly conserved region of the Pdx1 promoter that mediates early pancreas-wide Pdx1 expression. Molecular and cellular biology, 27(11), 4093-104. [PubMed:17403901] [PMC] [WorldCat] [DOI]
  60. Meredith, D.M., Borromeo, M.D., Deering, T.G., Casey, B.H., Savage, T.K., Mayer, P.R., ..., & Johnson, J.E. (2013).
    Program specificity for Ptf1a in pancreas versus neural tube development correlates with distinct collaborating cofactors and chromatin accessibility. Molecular and cellular biology, 33(16), 3166-79. [PubMed:23754747] [PMC] [WorldCat] [DOI]
  61. Schaffer, A.E., Freude, K.K., Nelson, S.B., & Sander, M. (2010).
    Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. Developmental cell, 18(6), 1022-9. [PubMed:20627083] [PMC] [WorldCat] [DOI]
  62. Ahnfelt-Rønne, J., Jørgensen, M.C., Klinck, R., Jensen, J.N., Füchtbauer, E.M., Deering, T., ..., & Serup, P. (2012).
    Ptf1a-mediated control of Dll1 reveals an alternative to the lateral inhibition mechanism. Development (Cambridge, England), 139(1), 33-45. [PubMed:22096075] [PMC] [WorldCat] [DOI]
  63. Mona, B., Avila, J.M., Meredith, D.M., Kollipara, R.K., & Johnson, J.E. (2016).
    Regulating the dorsal neural tube expression of Ptf1a through a distal 3' enhancer. Developmental biology, 418(1), 216-225. [PubMed:27350561] [PMC] [WorldCat] [DOI]
  64. Meredith, D.M., Masui, T., Swift, G.H., MacDonald, R.J., & Johnson, J.E. (2009).
    Multiple transcriptional mechanisms control Ptf1a levels during neural development including autoregulation by the PTF1-J complex. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29(36), 11139-48. [PubMed:19741120] [PMC] [WorldCat] [DOI]
  65. Liu, H., Kim, S.Y., Fu, Y., Wu, X., Ng, L., Swaroop, A., & Forrest, D. (2013).
    An isoform of retinoid-related orphan receptor β directs differentiation of retinal amacrine and horizontal interneurons. Nature communications, 4, 1813. [PubMed:23652001] [PMC] [WorldCat] [DOI]
  66. Ito, R., Kimura, A., Hirose, Y., Hatano, Y., Mima, A., Mae, S.I., ..., & Osafune, K. (2023).
    Elucidation of HHEX in pancreatic endoderm differentiation using a human iPSC differentiation model. Scientific reports, 13(1), 8659. [PubMed:37248264] [PMC] [WorldCat] [DOI]
  67. Millen, K.J., Steshina, E.Y., Iskusnykh, I.Y., & Chizhikov, V.V. (2014).
    Transformation of the cerebellum into more ventral brainstem fates causes cerebellar agenesis in the absence of Ptf1a function. Proceedings of the National Academy of Sciences of the United States of America, 111(17), E1777-86. [PubMed:24733890] [PMC] [WorldCat] [DOI]
  68. Huang, M., Huang, T., Xiang, Y., Xie, Z., Chen, Y., Yan, R., ..., & Cheng, L. (2008).
    Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Developmental biology, 322(2), 394-405. [PubMed:18634777] [WorldCat] [DOI]
  69. Bikoff, J.B., Gabitto, M.I., Rivard, A.F., Drobac, E., Machado, T.A., Miri, A., ..., & Jessell, T.M. (2016).
    Spinal Inhibitory Interneuron Diversity Delineates Variant Motor Microcircuits. Cell, 165(1), 207-219. [PubMed:26949184] [PMC] [WorldCat] [DOI]
  70. Zhang, J., Weinrich, J.A.P., Russ, J.B., Comer, J.D., Bommareddy, P.K., DiCasoli, R.J., ..., & Kaltschmidt, J.A. (2017).
    A Role for Dystonia-Associated Genes in Spinal GABAergic Interneuron Circuitry. Cell reports, 21(3), 666-678. [PubMed:29045835] [PMC] [WorldCat] [DOI]
  71. Escalante, A., & Klein, R. (2020).
    Spinal Inhibitory Ptf1a-Derived Neurons Prevent Self-Generated Itch. Cell reports, 33(8), 108422. [PubMed:33238109] [WorldCat] [DOI]
  72. Jusuf, P.R., & Harris, W.A. (2009).
    Ptf1a is expressed transiently in all types of amacrine cells in the embryonic zebrafish retina. Neural development, 4, 34. [PubMed:19732413] [PMC] [WorldCat] [DOI]
  73. Jusuf, P.R., Almeida, A.D., Randlett, O., Joubin, K., Poggi, L., & Harris, W.A. (2011).
    Origin and determination of inhibitory cell lineages in the vertebrate retina. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31(7), 2549-62. [PubMed:21325522] [PMC] [WorldCat] [DOI]
  74. Mazurier, N., Parain, K., Parlier, D., Pretto, S., Hamdache, J., Vernier, P., ..., & Perron, M. (2014).
    Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina. PloS one, 9(3), e92113. [PubMed:24643195] [PMC] [WorldCat] [DOI]
  75. Bessodes, N., Parain, K., Bronchain, O., Bellefroid, E.J., & Perron, M. (2017).
    Prdm13 forms a feedback loop with Ptf1a and is required for glycinergic amacrine cell genesis in the Xenopus Retina. Neural development, 12(1), 16. [PubMed:28863786] [PMC] [WorldCat] [DOI]
  76. Razy-Krajka, F., Brown, E.R., Horie, T., Callebert, J., Sasakura, Y., Joly, J.S., ..., & Vernier, P. (2012).
    Monoaminergic modulation of photoreception in ascidian: evidence for a proto-hypothalamo-retinal territory. BMC biology, 10, 45. [PubMed:22642675] [PMC] [WorldCat] [DOI]
  77. Maricich, S.M., Xia, A., Mathes, E.L., Wang, V.Y., Oghalai, J.S., Fritzsch, B., & Zoghbi, H.Y. (2009).
    Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29(36), 11123-33. [PubMed:19741118] [PMC] [WorldCat] [DOI]
  78. Bae, Y.K., Kani, S., Shimizu, T., Tanabe, K., Nojima, H., Kimura, Y., ..., & Hibi, M. (2009).
    Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Developmental biology, 330(2), 406-26. [PubMed:19371731] [WorldCat] [DOI]
  79. Elliott, K.L., Iskusnykh, I.Y., Chizhikov, V.V., & Fritzsch, B. (2023).
    Ptf1a expression is necessary for correct targeting of spiral ganglion neurons within the cochlear nuclei. Neuroscience letters, 806, 137244. [PubMed:37055006] [PMC] [WorldCat] [DOI]
  80. Iskusnykh, I.Y., Steshina, E.Y., & Chizhikov, V.V. (2016).
    Loss of Ptf1a Leads to a Widespread Cell-Fate Misspecification in the Brainstem, Affecting the Development of Somatosensory and Viscerosensory Nuclei. The Journal of neuroscience : the official journal of the Society for Neuroscience, 36(9), 2691-710. [PubMed:26937009] [PMC] [WorldCat] [DOI]
  81. Kohl, A., Hadas, Y., Klar, A., & Sela-Donenfeld, D. (2012).
    Axonal patterns and targets of dA1 interneurons in the chick hindbrain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(17), 5757-71. [PubMed:22539838] [PMC] [WorldCat] [DOI]
  82. Fukuda, A., Kawaguchi, Y., Furuyama, K., Kodama, S., Horiguchi, M., Kuhara, T., ..., & Uemoto, S. (2008).
    Reduction of Ptf1a gene dosage causes pancreatic hypoplasia and diabetes in mice. Diabetes, 57(9), 2421-31. [PubMed:18591390] [PMC] [WorldCat] [DOI]
  83. Sakikubo, M., Furuyama, K., Horiguchi, M., Hosokawa, S., Aoyama, Y., Tsuboi, K., ..., & Kawaguchi, Y. (2018).
    Ptf1a inactivation in adult pancreatic acinar cells causes apoptosis through activation of the endoplasmic reticulum stress pathway. Scientific reports, 8(1), 15812. [PubMed:30361559] [PMC] [WorldCat] [DOI]