「骨形成因子」の版間の差分

提供:脳科学辞典
ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
9行目: 9行目:
神経発生における機能と活性
神経発生における機能と活性
 神経系の初期発生では主としてパターンの形成に関与している。例えば、非神経外胚葉で発現し、それに隣接する領域の[[神経堤]]細胞の誘導に関与している<ref><pubmed> 7553857</pubmed></ref>。また、体幹部[[神経堤]]の移動開始を促進する。また、背側[[神経管]]で発現し、[[神経上皮細胞]]に背側特異的な遺伝子発現を誘導する。これにより、神経管背側ではそれに対応したサブタイプのニューロンが分化してくることになる<ref><pubmed> 9335341</pubmed></ref>。このように、神経前駆細胞に対してどのようなニューロンに分化するかを決定する作用もあるが、ショウジョウバエにおいてFMRFamideを神経ペプチドとして分泌するニューロンの分化の場合のように、軸索の投射先から供給されたBMPが逆行性にニューロンの細胞体まで伝達されてその遺伝子発現/分化形質を制御するような例もある<ref><pubmed>12679036</pubmed></ref>。これらの例以外にも様々な場面で神経分化の制御に関わっている。また、BMP シグナルは特定の細胞種の分化を促進するのみでなく、抑制もおこなう。神経管背側から分泌されるBMPによるシグナルは、Olig2を発現する[[オリゴデンドロサイト前駆細胞]]が分化するのを抑制する<ref><pubmed>18682850</pubmed></ref>。したがって、オリゴデンドロサイト前駆細胞が形成される際にはBMPによる抑制はFGFシグナルによってさらに抑制されていなければならない。成体マウスの海馬においては、[[神経幹細胞]]がゆっくりと増殖しながら分化したニューロン(顆粒細胞)を産生しているが、BMPシグナルのレベルを下げてしまうと[[神経幹細胞]]が一時的に増殖を早める一方でゆっくり増殖する幹細胞のプールが枯渇してしまい、結果的に産生するニューロンの数が減る<ref><pubmed> 20621052</pubmed></ref>。したがって、この場合ではBMPは[[神経幹細胞]]の維持をおこなっていると考えられる。
 神経系の初期発生では主としてパターンの形成に関与している。例えば、非神経外胚葉で発現し、それに隣接する領域の[[神経堤]]細胞の誘導に関与している<ref><pubmed> 7553857</pubmed></ref>。また、体幹部[[神経堤]]の移動開始を促進する。また、背側[[神経管]]で発現し、[[神経上皮細胞]]に背側特異的な遺伝子発現を誘導する。これにより、神経管背側ではそれに対応したサブタイプのニューロンが分化してくることになる<ref><pubmed> 9335341</pubmed></ref>。このように、神経前駆細胞に対してどのようなニューロンに分化するかを決定する作用もあるが、ショウジョウバエにおいてFMRFamideを神経ペプチドとして分泌するニューロンの分化の場合のように、軸索の投射先から供給されたBMPが逆行性にニューロンの細胞体まで伝達されてその遺伝子発現/分化形質を制御するような例もある<ref><pubmed>12679036</pubmed></ref>。これらの例以外にも様々な場面で神経分化の制御に関わっている。また、BMP シグナルは特定の細胞種の分化を促進するのみでなく、抑制もおこなう。神経管背側から分泌されるBMPによるシグナルは、Olig2を発現する[[オリゴデンドロサイト前駆細胞]]が分化するのを抑制する<ref><pubmed>18682850</pubmed></ref>。したがって、オリゴデンドロサイト前駆細胞が形成される際にはBMPによる抑制はFGFシグナルによってさらに抑制されていなければならない。成体マウスの海馬においては、[[神経幹細胞]]がゆっくりと増殖しながら分化したニューロン(顆粒細胞)を産生しているが、BMPシグナルのレベルを下げてしまうと[[神経幹細胞]]が一時的に増殖を早める一方でゆっくり増殖する幹細胞のプールが枯渇してしまい、結果的に産生するニューロンの数が減る<ref><pubmed> 20621052</pubmed></ref>。したがって、この場合ではBMPは[[神経幹細胞]]の維持をおこなっていると考えられる。
神経筋接合、神経変性疾患とBMPシグナル
 主にショウジョウバエの研究から、[[運動神経]]と筋肉の接合部(neuromauscular junction、[[神経筋接合部]]の項を参照)における[[シナプス]]形成に逆行性(retrograde)のBMPシグナルが重要な役割を果たしていることが示されている。
<references/>
<references/>

2012年5月9日 (水) 15:10時点における版

英語名:Bone Morphogenetic Protein  英語略称名:BMP

歴史  もともとはBone Morphogenetic Protein Bone Morphogenetic Protein という名が示す通り、骨組織や軟骨の分化を誘導、促進する分子として同定された一群のタンパク質である。その7種類のうち、BMP2〜BMP7はtransforming growth factor beta (TGF−β)superfamily transforming growth factor beta superfamily に属するが、BMP1はmetalloprotease metalloproteinase である。その後、さらに多くのメンバーが同定されている。本稿で扱うのは、TGF−β superfamilyに属するBMPとする。両生類等を用いた実験から、胚の背腹軸の決定に関与していることが示され、その後も発生期の組織や器官の誘導、パターン形成、細胞死の誘導、細胞分化の制御など、発生過程の様々な場面で重要な役割をしていることが明らかとなっている。

シグナル伝達[1]  BMPを含むTGF−β superfamilyタンパク質はホモもしくはヘテロ二量体としてリガンド活性を持ち、2本のペプチド鎖はジスルフィド結合によって結合している。膜貫通型のセリン/スレオニンリン酸化酵素受容体であるI型、II型BMP受容体のヘテロ二量体に結合して、シグナルが細胞内に伝達される。TAK1/TAB1/2を介した経路やPKAを介した経路等も知られているが、主要なシグナル伝達経路はSMADタンパク質を介した経路である。リガンドの結合によって活性化された受容体がSMAD1/5/8のセリン/スレオニン残基をリン酸化すると、リン酸化SMAD1/5/8は細胞質にあるSMAD4と結合して核に移行する。そこでターゲット遺伝子のcis制御領域に結合し、その転写を活性化する。一義的にはBMPを産生する細胞からの濃度勾配がパターンを形成するために重要であるが、細胞外ではノギン(noggin) やコーディン(chordin)などのようなBMPに結合する分泌性タンパク質によって細胞外で活性を抑制されるし、細胞内ではSMAD1/5/8に結合する抑制性SMAD6/7によってもBMPシグナルの調節がおこなわれる。一般には、SMAD1/5/8のリン酸化部位に対する抗体を用いた検出で、BMPシグナルの活性化分布を検出することができる。

神経発生における機能と活性  神経系の初期発生では主としてパターンの形成に関与している。例えば、非神経外胚葉で発現し、それに隣接する領域の神経堤細胞の誘導に関与している[2]。また、体幹部神経堤の移動開始を促進する。また、背側神経管で発現し、神経上皮細胞に背側特異的な遺伝子発現を誘導する。これにより、神経管背側ではそれに対応したサブタイプのニューロンが分化してくることになる[3]。このように、神経前駆細胞に対してどのようなニューロンに分化するかを決定する作用もあるが、ショウジョウバエにおいてFMRFamideを神経ペプチドとして分泌するニューロンの分化の場合のように、軸索の投射先から供給されたBMPが逆行性にニューロンの細胞体まで伝達されてその遺伝子発現/分化形質を制御するような例もある[4]。これらの例以外にも様々な場面で神経分化の制御に関わっている。また、BMP シグナルは特定の細胞種の分化を促進するのみでなく、抑制もおこなう。神経管背側から分泌されるBMPによるシグナルは、Olig2を発現するオリゴデンドロサイト前駆細胞が分化するのを抑制する[5]。したがって、オリゴデンドロサイト前駆細胞が形成される際にはBMPによる抑制はFGFシグナルによってさらに抑制されていなければならない。成体マウスの海馬においては、神経幹細胞がゆっくりと増殖しながら分化したニューロン(顆粒細胞)を産生しているが、BMPシグナルのレベルを下げてしまうと神経幹細胞が一時的に増殖を早める一方でゆっくり増殖する幹細胞のプールが枯渇してしまい、結果的に産生するニューロンの数が減る[6]。したがって、この場合ではBMPは神経幹細胞の維持をおこなっていると考えられる。

神経筋接合、神経変性疾患とBMPシグナル  主にショウジョウバエの研究から、運動神経と筋肉の接合部(neuromauscular junction、神経筋接合部の項を参照)におけるシナプス形成に逆行性(retrograde)のBMPシグナルが重要な役割を果たしていることが示されている。

  1. Dutko, J.A., & Mullins, M.C. (2011).
    SnapShot: BMP signaling in development. Cell, 145(4), 636, 636.e1-2. [PubMed:21565618] [WorldCat] [DOI]
  2. Liem, K.F., Tremml, G., Roelink, H., & Jessell, T.M. (1995).
    Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell, 82(6), 969-79. [PubMed:7553857] [WorldCat] [DOI]
  3. Liem, K.F., Tremml, G., & Jessell, T.M. (1997).
    A role for the roof plate and its resident TGFbeta-related proteins in neuronal patterning in the dorsal spinal cord. Cell, 91(1), 127-38. [PubMed:9335341] [WorldCat] [DOI]
  4. Allan, D.W., St Pierre, S.E., Miguel-Aliaga, I., & Thor, S. (2003).
    Specification of neuropeptide cell identity by the integration of retrograde BMP signaling and a combinatorial transcription factor code. Cell, 113(1), 73-86. [PubMed:12679036] [WorldCat] [DOI]
  5. Bilican, B., Fiore-Heriche, C., Compston, A., Allen, N.D., & Chandran, S. (2008).
    Induction of Olig2 precursors by FGF involves BMP signalling blockade at the Smad level. PloS one, 3(8), e2863. [PubMed:18682850] [PMC] [WorldCat] [DOI]
  6. Mira, H., Andreu, Z., Suh, H., Lie, D.C., Jessberger, S., Consiglio, A., ..., & Gage, F.H. (2010).
    Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell stem cell, 7(1), 78-89. [PubMed:20621052] [WorldCat] [DOI]