「Test」の版間の差分

提供: 脳科学辞典
ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
 
(同じ利用者による、間の36版が非表示)
1行目: 1行目:
=== 情動や意欲、意思決定 ===
<ref name=Krapp1996><pubmed>8861960</pubmed></ref>
 ドーパミンやオピオイドの作用を変化させると、強迫的な選択行動等がひきおこされることから側坐核がhedonic(快楽的)な感情のプロセスに関与していることが示された。Berridgeらは、げっ歯類の側坐核の中で吻側―尾側軸の特定の異なる領域が、「快楽や報酬」領域と「恐怖や嫌悪」領域という異なる情動と対応していることを明らかにした<ref name=Berridge2008><pubmed>18311558</pubmed></ref>
<ref name=Knoefler1996><pubmed>8703005</pubmed></ref>
 
<ref name=Rose2001><pubmed>11562365</pubmed></ref>
 [[サル]]でも[[ビククリン]]をごく少量注入して異なる腹側線条体領域の活動を局所的に障害すると、行動の抑制と意欲の低下・[[性行動の神経回路|性的行動]]の亢進・異常な運動を繰り返す[[不安様行動]]が障害個所に特徴的に表れた<ref name=Worbe2009><pubmed>19068490</pubmed></ref> 。Shellの内側部は外側視床下部を抑制していて、これを障害すると[[摂食行動]]が引き起こされる<ref name=Kelley2005><pubmed>16289609</pubmed></ref>
<ref name=Krapp1998><pubmed>9851981</pubmed></ref>
<ref name=Kawaguchi2002><pubmed>12185368</pubmed></ref>
 線条体には、報酬と関連した感覚刺激や報酬そのものを予測的に期待する発火と、これらの後に反応する発火とが見られる。サルの電気生理学的実験では、背側線条体では課題の比較的前半つまり感覚刺激やその予測に関連した神経発火が見られるのに対し、腹側線条体では、課題の後半つまり報酬の予測や報酬を得た後に発火するものが多く観察されている<ref name=Tremblay2009><pubmed></pubmed></ref><ref name=Nakamura2012><pubmed>23136434</pubmed></ref> 。従って、腹側線条体は報酬を得るというゴールに達するため行動を起こす意欲driving forceの源となっている可能性がある。
<ref name=Sellick2004><pubmed>15543146</pubmed></ref>
 
<ref name=Sellick2003><pubmed>14514650</pubmed></ref>
 [[ヒト]]の非侵襲的イメージングでは腹側線条体が報酬の予測・評価・報酬予測誤差の表現や、動機に基づいた学習に関与していることが示されたが、報酬の時間的予測については結論に差異がある<ref name=Knutson2001><pubmed>11459880</pubmed></ref><ref name=Pagnoni2002><pubmed>11802175</pubmed></ref><ref name=Tanaka2004><pubmed>15235607</pubmed></ref><ref name=ODoherty2004><pubmed>15087550</pubmed></ref><ref name=Kuhnen2005><pubmed>16129404</pubmed></ref>
<ref name=Hoveyda1999><pubmed>10507728</pubmed></ref>
 
<ref name=Masui2008><pubmed>18606784</pubmed></ref>
 Nicolaらは腹側被蓋野・内側前頭葉・扁桃体基底外側複合体の、側坐核単一細胞の発火への影響を調べた。[[ラット]]が音を弁別してレバー押しやnose pokeで反応することを学習すると、側坐核ニューロンは音に反応するが、腹側被蓋野・内側前頭葉・扁桃体からの入力をブロックすると側坐核ニューロンの発火が弱まり、弁別反応の正解率も低下する<ref name=Yun2004><pubmed>15044531</pubmed></ref><ref name=Ishikawa2008><pubmed>18463262</pubmed></ref><ref name=Ambroggi2008><pubmed>18760700</pubmed></ref> 。したがって、これらの領域からの情報が側坐核で統合することが刺激―行動に必須であると結論付けられた。
<ref name=Pan2013><pubmed>23325761</pubmed></ref>
 
<ref name=Burlison2008><pubmed>18294628</pubmed></ref>
 一方、側坐核は報酬などの目的達成のためのオペラント条件付けそのものというより、現在進行中の行動から、一定の時間を経て別の行動に変化する過程に重要であるという意見がある<ref name=Cardinal2001><pubmed>11375482</pubmed></ref><ref name=Cardinal2002><pubmed>12034134</pubmed></ref><ref name=Nicola2007><pubmed>16983543</pubmed></ref> 。さらに、サルの腹側線条体細胞の特徴として、例えば視覚刺激→行動という単一試行の課題では課題に反応する細胞の割合は10%前後だが、複数のステップを経て報酬を得るような[[多試行報酬スケジュール課題]]では反応する細胞が60%前後と非常に多い。これらはスケジュールのうち特定の段階で、視覚手がかりへの応答や運動への応答報酬投与に応答する<ref name=Shidara1998><pubmed>9502820</pubmed></ref>
<ref name=AlShammari2011><pubmed>21749365</pubmed></ref>
 
<ref name=Adell2000><pubmed>10768861</pubmed></ref>
 側坐核におけるドーパミンの作用については多くの知見がある。報酬を得られたらその行動を学習し、報酬を得られなかったら柔軟性を発揮して別の行動を選択する。この相反する行動決定の切り替えのメカニズムの少なくとも一部に、側坐核におけるphasicまたはtonicなドーパミンの作用のバランスが関与している。Phasicな作用は辺縁系(海馬)からの入力で主にドーパミン[[D1受容体]]を介する調節を受けている。Tonicな作用は前頭葉からの入力で主にドーパミン[[D2受容体]]を介する調節を受けている。腹側淡蒼球 (ventral pallidum, VP)は通常ドーパミン系をtonicに抑制している。海馬から興奮性の入力を受けると、側坐核は抑制性の投射をこのVPに送り、[[脱抑制]]機構によりドーパミン細胞をtonicに興奮させる。このtonicなドーパミン投射はD2受容体を介して前頭葉からの入力を抑制する。一方、phasicな作用は脚橋被蓋核からドーパミン細胞への入力による。これらの入力の側坐核でのバランスによって適切な行動の選択が可能となる<ref name=Goto2008><pubmed>18786735</pubmed></ref>
<ref name=Masui2007><pubmed>17938243</pubmed></ref>
 
<ref name=Magnuson2013><pubmed>23823474</pubmed></ref>
<references />
<ref name=Fujitani2017><pubmed>28420858</pubmed></ref>
<ref name=VeiteSchmahl2017><pubmed>28697176</pubmed></ref>
<ref name=Hingorani2003><pubmed>14706336</pubmed></ref>
<ref name=Obata2001><pubmed>11318877</pubmed></ref>
<ref name=Hoshino2005><pubmed>16039563</pubmed></ref>
<ref name=Hoshino2006><pubmed>16997750</pubmed></ref>
<ref name=Wullimann2011><pubmed>21559349</pubmed></ref>
<ref name=Yamada2014><pubmed>24695699</pubmed></ref>
<ref name=Seto2014><pubmed>24535035</pubmed></ref>
<ref name=Pascual2007><pubmed>17360405</pubmed></ref>
<ref name=Millen2008><pubmed>18513948</pubmed></ref>
<ref name=Achim2014><pubmed>24196748</pubmed></ref>
<ref name=Lowenstein2023><pubmed>35262281</pubmed></ref>
<ref name=BenArie1997><pubmed>9367153</pubmed></ref>
<ref name=Machold2005><pubmed>16202705</pubmed></ref>
<ref name=Wang2005><pubmed>16202707</pubmed></ref>
<ref name=Glasgow2005><pubmed>16291784</pubmed></ref>
<ref name=Hori2012><pubmed>22830054</pubmed></ref>
<ref name=Fujitani2006><pubmed>17075007</pubmed></ref>
<ref name=Nakhai2007><pubmed>17301087</pubmed></ref>
<ref name=Dullin2007><pubmed>17910758</pubmed></ref>
<ref name=Fujiyama2009><pubmed>19439493</pubmed></ref>
<ref name=Yamada2007><pubmed>17928434</pubmed></ref>
<ref name=Aldinger2008><pubmed>18184775</pubmed></ref>
<ref name=Fujiyama2018><pubmed>29972793</pubmed></ref>
<ref name=Horie2018><pubmed>30228204</pubmed></ref>
<ref name=Russ2015><pubmed>25878276</pubmed></ref>
<ref name=Uhlen2015><pubmed>25613900</pubmed></ref>
<ref name=Duque2022><pubmed>34125483</pubmed></ref>
<ref name=Beres2006><pubmed>16354684</pubmed></ref>
<ref name=Masui2010><pubmed>20398665</pubmed></ref>
<ref name=Hori2008><pubmed>18198335</pubmed></ref>
<ref name=Lelievre2011><pubmed>21839069</pubmed></ref>
<ref name=Hanoun2014><pubmed>25355311</pubmed></ref>
<ref name=Rodolosse2009><pubmed>18834332</pubmed></ref>
<ref name=Jin2019><pubmed>30470852</pubmed></ref>
<ref name=Hanotel2014><pubmed>24370451</pubmed></ref>
<ref name=Whittaker2021><pubmed>34730112</pubmed></ref>
<ref name=Chang2013><pubmed>23639443</pubmed></ref>
<ref name=Watanabe2015><pubmed>25995483</pubmed></ref>
<ref name=Jin2015><pubmed>25966682</pubmed></ref>
<ref name=Nishida2010><pubmed>19887377</pubmed></ref>
<ref name=Henke2009><pubmed>19641016</pubmed></ref>
<ref name=Wiebe2007><pubmed>17403901</pubmed></ref>
<ref name=Meredith2013><pubmed>23754747</pubmed></ref>
<ref name=Schaffer2010><pubmed>20627083</pubmed></ref>
<ref name=AhnfeltRonne2012><pubmed>22096075</pubmed></ref>
<ref name=Mona2016><pubmed>27350561</pubmed></ref>
<ref name=Meredith2009><pubmed>19741120</pubmed></ref>
<ref name=Liu2013><pubmed>23652001</pubmed></ref>
<ref name=Ito2023><pubmed>37248264</pubmed></ref>
<ref name=Millen2014><pubmed>24733890</pubmed></ref>
<ref name=Huang2008><pubmed>18634777</pubmed></ref>
<ref name=Bikoff2016><pubmed>26949184</pubmed></ref>
<ref name=Zhang2017><pubmed>29045835</pubmed></ref>
<ref name=Escalante2020><pubmed>33238109</pubmed></ref>
<ref name=Jusuf2009><pubmed>19732413</pubmed></ref>
<ref name=Jusuf2011><pubmed>21325522</pubmed></ref>
<ref name=Mazurier2014><pubmed>24643195</pubmed></ref>
<ref name=Bessodes2017><pubmed>28863786</pubmed></ref>
<ref name=RazyKrajka2012><pubmed>22642675</pubmed></ref>
<ref name=Maricich2009><pubmed>19741118</pubmed></ref>
<ref name=Bae2009><pubmed>19371731</pubmed></ref>
<ref name=Elliott2023><pubmed>37055006</pubmed></ref>
<ref name=Iskusnykh2016><pubmed>26937009</pubmed></ref>
<ref name=Kohl2012><pubmed>22539838</pubmed></ref>
<ref name=Fukuda2008><pubmed>18591390</pubmed></ref>
<ref name=Sakikubo2018><pubmed>30361559</pubmed></ref>

2025年10月5日 (日) 12:12時点における最新版

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83]

  1. Krapp, A., Knöfler, M., Frutiger, S., Hughes, G.J., Hagenbüchle, O., & Wellauer, P.K. (1996).
    The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein. The EMBO journal, 15(16), 4317-29. [PubMed:8861960] [PMC] [WorldCat]
  2. Knöfler, M., Krapp, A., Hagenbüchle, O., & Wellauer, P.K. (1996).
    Constitutive expression of the gene for the cell-specific p48 DNA-binding subunit of pancreas transcription factor 1 in cultured cells is under control of binding sites for transcription factors Sp1 and alphaCbf. The Journal of biological chemistry, 271(36), 21993-2002. [PubMed:8703005] [WorldCat] [DOI]
  3. Rose, S.D., Swift, G.H., Peyton, M.J., Hammer, R.E., & MacDonald, R.J. (2001).
    The role of PTF1-P48 in pancreatic acinar gene expression. The Journal of biological chemistry, 276(47), 44018-26. [PubMed:11562365] [WorldCat] [DOI]
  4. Krapp, A., Knöfler, M., Ledermann, B., Bürki, K., Berney, C., Zoerkler, N., ..., & Wellauer, P.K. (1998).
    The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes & development, 12(23), 3752-63. [PubMed:9851981] [PMC] [WorldCat] [DOI]
  5. Kawaguchi, Y., Cooper, B., Gannon, M., Ray, M., MacDonald, R.J., & Wright, C.V. (2002).
    The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nature genetics, 32(1), 128-34. [PubMed:12185368] [WorldCat] [DOI]
  6. Sellick, G.S., Barker, K.T., Stolte-Dijkstra, I., Fleischmann, C., Coleman, R.J., Garrett, C., ..., & Houlston, R.S. (2004).
    Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nature genetics, 36(12), 1301-5. [PubMed:15543146] [WorldCat] [DOI]
  7. Sellick, G.S., Garrett, C., & Houlston, R.S. (2003).
    A novel gene for neonatal diabetes maps to chromosome 10p12.1-p13. Diabetes, 52(10), 2636-8. [PubMed:14514650] [WorldCat] [DOI]
  8. Hoveyda, N., Shield, J.P., Garrett, C., Chong, W.K., Beardsall, K., Bentsi-Enchill, E., ..., & Thompson, M.H. (1999).
    Neonatal diabetes mellitus and cerebellar hypoplasia/agenesis: report of a new recessive syndrome. Journal of medical genetics, 36(9), 700-4. [PubMed:10507728] [PMC] [WorldCat]
  9. Masui, T., Swift, G.H., Hale, M.A., Meredith, D.M., Johnson, J.E., & Macdonald, R.J. (2008).
    Transcriptional autoregulation controls pancreatic Ptf1a expression during development and adulthood. Molecular and cellular biology, 28(17), 5458-68. [PubMed:18606784] [PMC] [WorldCat] [DOI]
  10. Pan, F.C., Bankaitis, E.D., Boyer, D., Xu, X., Van de Casteele, M., Magnuson, M.A., ..., & Wright, C.V. (2013).
    Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development (Cambridge, England), 140(4), 751-64. [PubMed:23325761] [PMC] [WorldCat] [DOI]
  11. Burlison, J.S., Long, Q., Fujitani, Y., Wright, C.V., & Magnuson, M.A. (2008).
    Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells. Developmental biology, 316(1), 74-86. [PubMed:18294628] [PMC] [WorldCat] [DOI]
  12. Al-Shammari, M., Al-Husain, M., Al-Kharfy, T., & Alkuraya, F.S. (2011).
    A novel PTF1A mutation in a patient with severe pancreatic and cerebellar involvement. Clinical genetics, 80(2), 196-8. [PubMed:21749365] [WorldCat] [DOI]
  13. Adell, T., Gómez-Cuadrado, A., Skoudy, A., Pettengill, O.S., Longnecker, D.S., & Real, F.X. (2000).
    Role of the basic helix-loop-helix transcription factor p48 in the differentiation phenotype of exocrine pancreas cancer cells. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research, 11(3), 137-47. [PubMed:10768861] [WorldCat]
  14. Masui, T., Long, Q., Beres, T.M., Magnuson, M.A., & MacDonald, R.J. (2007).
    Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex. Genes & development, 21(20), 2629-43. [PubMed:17938243] [PMC] [WorldCat] [DOI]
  15. Magnuson, M.A., & Osipovich, A.B. (2013).
    Pancreas-specific Cre driver lines and considerations for their prudent use. Cell metabolism, 18(1), 9-20. [PubMed:23823474] [PMC] [WorldCat] [DOI]
  16. Fujitani, Y. (2017).
    Transcriptional regulation of pancreas development and β-cell function [Review]. Endocrine journal, 64(5), 477-486. [PubMed:28420858] [WorldCat] [DOI]
  17. Veite-Schmahl, M.J., Joesten, W.C., & Kennedy, M.A. (2017).
    HMGA1 expression levels are elevated in pancreatic intraepithelial neoplasia cells in the Ptf1a-Cre; LSL-KrasG12D transgenic mouse model of pancreatic cancer. British journal of cancer, 117(5), 639-647. [PubMed:28697176] [PMC] [WorldCat] [DOI]
  18. Hingorani, S.R., Petricoin, E.F., Maitra, A., Rajapakse, V., King, C., Jacobetz, M.A., ..., & Tuveson, D.A. (2003).
    Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer cell, 4(6), 437-50. [PubMed:14706336] [WorldCat] [DOI]
  19. Obata, J., Yano, M., Mimura, H., Goto, T., Nakayama, R., Mibu, Y., ..., & Kawaichi, M. (2001).
    p48 subunit of mouse PTF1 binds to RBP-Jkappa/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos. Genes to cells : devoted to molecular & cellular mechanisms, 6(4), 345-60. [PubMed:11318877] [WorldCat] [DOI]
  20. Hoshino, M., Nakamura, S., Mori, K., Kawauchi, T., Terao, M., Nishimura, Y.V., ..., & Nabeshima, Y. (2005).
    Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron, 47(2), 201-13. [PubMed:16039563] [WorldCat] [DOI]
  21. Hoshino, M. (2006).
    Molecular machinery governing GABAergic neuron specification in the cerebellum. Cerebellum (London, England), 5(3), 193-8. [PubMed:16997750] [WorldCat] [DOI]
  22. Wullimann, M.F., Mueller, T., Distel, M., Babaryka, A., Grothe, B., & Köster, R.W. (2011).
    The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis. Frontiers in neuroanatomy, 5, 27. [PubMed:21559349] [PMC] [WorldCat] [DOI]
  23. Yamada, M., Seto, Y., Taya, S., Owa, T., Inoue, Y.U., Inoue, T., ..., & Hoshino, M. (2014).
    Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience, 34(14), 4786-800. [PubMed:24695699] [PMC] [WorldCat] [DOI]
  24. Seto, Y., Nakatani, T., Masuyama, N., Taya, S., Kumai, M., Minaki, Y., ..., & Hoshino, M. (2014).
    Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nature communications, 5, 3337. [PubMed:24535035] [PMC] [WorldCat] [DOI]
  25. Pascual, M., Abasolo, I., Mingorance-Le Meur, A., Martínez, A., Del Rio, J.A., Wright, C.V., ..., & Soriano, E. (2007).
    Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proceedings of the National Academy of Sciences of the United States of America, 104(12), 5193-8. [PubMed:17360405] [PMC] [WorldCat] [DOI]
  26. Millen, K.J., & Gleeson, J.G. (2008).
    Cerebellar development and disease. Current opinion in neurobiology, 18(1), 12-9. [PubMed:18513948] [PMC] [WorldCat] [DOI]
  27. Achim, K., Salminen, M., & Partanen, J. (2014).
    Mechanisms regulating GABAergic neuron development. Cellular and molecular life sciences : CMLS, 71(8), 1395-415. [PubMed:24196748] [PMC] [WorldCat] [DOI]
  28. Lowenstein, E.D., Cui, K., & Hernandez-Miranda, L.R. (2023).
    Regulation of early cerebellar development. The FEBS journal, 290(11), 2786-2804. [PubMed:35262281] [WorldCat] [DOI]
  29. Ben-Arie, N., Bellen, H.J., Armstrong, D.L., McCall, A.E., Gordadze, P.R., Guo, Q., ..., & Zoghbi, H.Y. (1997).
    Math1 is essential for genesis of cerebellar granule neurons. Nature, 390(6656), 169-72. [PubMed:9367153] [WorldCat] [DOI]
  30. Machold, R., & Fishell, G. (2005).
    Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron, 48(1), 17-24. [PubMed:16202705] [WorldCat] [DOI]
  31. Wang, V.Y., Rose, M.F., & Zoghbi, H.Y. (2005).
    Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron, 48(1), 31-43. [PubMed:16202707] [WorldCat] [DOI]
  32. Glasgow, S.M., Henke, R.M., Macdonald, R.J., Wright, C.V., & Johnson, J.E. (2005).
    Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development (Cambridge, England), 132(24), 5461-9. [PubMed:16291784] [WorldCat] [DOI]
  33. Hori, K., & Hoshino, M. (2012).
    GABAergic neuron specification in the spinal cord, the cerebellum, and the cochlear nucleus. Neural plasticity, 2012, 921732. [PubMed:22830054] [PMC] [WorldCat] [DOI]
  34. Fujitani, Y., Fujitani, S., Luo, H., Qiu, F., Burlison, J., Long, Q., ..., & Wright, C.V. (2006).
    Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development (Cambridge, England), 133(22), 4439-50. [PubMed:17075007] [WorldCat] [DOI]
  35. Nakhai, H., Sel, S., Favor, J., Mendoza-Torres, L., Paulsen, F., Duncker, G.I., & Schmid, R.M. (2007).
    Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development (Cambridge, England), 134(6), 1151-60. [PubMed:17301087] [WorldCat] [DOI]
  36. Dullin, J.P., Locker, M., Robach, M., Henningfeld, K.A., Parain, K., Afelik, S., ..., & Perron, M. (2007).
    Ptf1a triggers GABAergic neuronal cell fates in the retina. BMC developmental biology, 7, 110. [PubMed:17910758] [PMC] [WorldCat] [DOI]
  37. Fujiyama, T., Yamada, M., Terao, M., Terashima, T., Hioki, H., Inoue, Y.U., ..., & Hoshino, M. (2009).
    Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. Development (Cambridge, England), 136(12), 2049-58. [PubMed:19439493] [WorldCat] [DOI]
  38. Yamada, M., Terao, M., Terashima, T., Fujiyama, T., Kawaguchi, Y., Nabeshima, Y., & Hoshino, M. (2007).
    Origin of climbing fiber neurons and their developmental dependence on Ptf1a. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(41), 10924-34. [PubMed:17928434] [PMC] [WorldCat] [DOI]
  39. Aldinger, K.A., & Elsen, G.E. (2008).
    Ptf1a is a molecular determinant for both glutamatergic and GABAergic neurons in the hindbrain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(2), 338-9. [PubMed:18184775] [PMC] [WorldCat] [DOI]
  40. Fujiyama, T., Miyashita, S., Tsuneoka, Y., Kanemaru, K., Kakizaki, M., Kanno, S., ..., & Hoshino, M. (2018).
    Forebrain Ptf1a Is Required for Sexual Differentiation of the Brain. Cell reports, 24(1), 79-94. [PubMed:29972793] [WorldCat] [DOI]
  41. Horie, T., Horie, R., Chen, K., Cao, C., Nakagawa, M., Kusakabe, T.G., ..., & Levine, M. (2018).
    Regulatory cocktail for dopaminergic neurons in a protovertebrate identified by whole-embryo single-cell transcriptomics. Genes & development, 32(19-20), 1297-1302. [PubMed:30228204] [PMC] [WorldCat] [DOI]
  42. Russ, J.B., Borromeo, M.D., Kollipara, R.K., Bommareddy, P.K., Johnson, J.E., & Kaltschmidt, J.A. (2015).
    Misexpression of ptf1a in cortical pyramidal cells in vivo promotes an inhibitory peptidergic identity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 35(15), 6028-37. [PubMed:25878276] [PMC] [WorldCat] [DOI]
  43. Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., ..., & Pontén, F. (2015).
    Proteomics. Tissue-based map of the human proteome. Science (New York, N.Y.), 347(6220), 1260419. [PubMed:25613900] [WorldCat] [DOI]
  44. Duque, M., Amorim, J.P., & Bessa, J. (2022).
    Ptf1a function and transcriptional cis-regulation, a cornerstone in vertebrate pancreas development. The FEBS journal, 289(17), 5121-5136. [PubMed:34125483] [PMC] [WorldCat] [DOI]
  45. Beres, T.M., Masui, T., Swift, G.H., Shi, L., Henke, R.M., & MacDonald, R.J. (2006).
    PTF1 is an organ-specific and Notch-independent basic helix-loop-helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. Molecular and cellular biology, 26(1), 117-30. [PubMed:16354684] [PMC] [WorldCat] [DOI]
  46. Masui, T., Swift, G.H., Deering, T., Shen, C., Coats, W.S., Long, Q., ..., & MacDonald, R.J. (2010).
    Replacement of Rbpj with Rbpjl in the PTF1 complex controls the final maturation of pancreatic acinar cells. Gastroenterology, 139(1), 270-80. [PubMed:20398665] [PMC] [WorldCat] [DOI]
  47. Hori, K., Cholewa-Waclaw, J., Nakada, Y., Glasgow, S.M., Masui, T., Henke, R.M., ..., & Johnson, J.E. (2008).
    A nonclassical bHLH Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling. Genes & development, 22(2), 166-78. [PubMed:18198335] [PMC] [WorldCat] [DOI]
  48. Lelièvre, E.C., Lek, M., Boije, H., Houille-Vernes, L., Brajeul, V., Slembrouck, A., ..., & Guillonneau, X. (2011).
    Ptf1a/Rbpj complex inhibits ganglion cell fate and drives the specification of all horizontal cell subtypes in the chick retina. Developmental biology, 358(2), 296-308. [PubMed:21839069] [WorldCat] [DOI]
  49. Hanoun, N., Fritsch, S., Gayet, O., Gigoux, V., Cordelier, P., Dusetti, N., ..., & Dufresne, M. (2014).
    The E3 ubiquitin ligase thyroid hormone receptor-interacting protein 12 targets pancreas transcription factor 1a for proteasomal degradation. The Journal of biological chemistry, 289(51), 35593-604. [PubMed:25355311] [PMC] [WorldCat] [DOI]
  50. Rodolosse, A., Campos, M.L., Rooman, I., Lichtenstein, M., & Real, F.X. (2009).
    p/CAF modulates the activity of the transcription factor p48/Ptf1a involved in pancreatic acinar differentiation. The Biochemical journal, 418(2), 463-73. [PubMed:18834332] [WorldCat] [DOI]
  51. Jin, K., & Xiang, M. (2019).
    Transcription factor Ptf1a in development, diseases and reprogramming. Cellular and molecular life sciences : CMLS, 76(5), 921-940. [PubMed:30470852] [PMC] [WorldCat] [DOI]
  52. Hanotel, J., Bessodes, N., Thélie, A., Hedderich, M., Parain, K., Van Driessche, B., ..., & Bellefroid, E.J. (2014).
    The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. Developmental biology, 386(2), 340-57. [PubMed:24370451] [WorldCat] [DOI]
  53. Whittaker, D.E., Oleari, R., Gregory, L.C., Le Quesne-Stabej, P., Williams, H.J., GOSgene, ..., & Dattani, M.T. (2021).
    A recessive PRDM13 mutation results in congenital hypogonadotropic hypogonadism and cerebellar hypoplasia. The Journal of clinical investigation, 131(24). [PubMed:34730112] [PMC] [WorldCat] [DOI]
  54. Chang, J.C., Meredith, D.M., Mayer, P.R., Borromeo, M.D., Lai, H.C., Ou, Y.H., & Johnson, J.E. (2013).
    Prdm13 mediates the balance of inhibitory and excitatory neurons in somatosensory circuits. Developmental cell, 25(2), 182-95. [PubMed:23639443] [PMC] [WorldCat] [DOI]
  55. Watanabe, S., Sanuki, R., Sugita, Y., Imai, W., Yamazaki, R., Kozuka, T., ..., & Furukawa, T. (2015).
    Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 35(20), 8004-20. [PubMed:25995483] [PMC] [WorldCat] [DOI]
  56. Jin, K., Jiang, H., Xiao, D., Zou, M., Zhu, J., & Xiang, M. (2015).
    Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Molecular brain, 8, 28. [PubMed:25966682] [PMC] [WorldCat] [DOI]
  57. Nishida, K., Hoshino, M., Kawaguchi, Y., & Murakami, F. (2010).
    Ptf1a directly controls expression of immunoglobulin superfamily molecules Nephrin and Neph3 in the developing central nervous system. The Journal of biological chemistry, 285(1), 373-80. [PubMed:19887377] [PMC] [WorldCat] [DOI]
  58. Henke, R.M., Savage, T.K., Meredith, D.M., Glasgow, S.M., Hori, K., Dumas, J., ..., & Johnson, J.E. (2009).
    Neurog2 is a direct downstream target of the Ptf1a-Rbpj transcription complex in dorsal spinal cord. Development (Cambridge, England), 136(17), 2945-54. [PubMed:19641016] [PMC] [WorldCat] [DOI]
  59. Wiebe, P.O., Kormish, J.D., Roper, V.T., Fujitani, Y., Alston, N.I., Zaret, K.S., ..., & Gannon, M. (2007).
    Ptf1a binds to and activates area III, a highly conserved region of the Pdx1 promoter that mediates early pancreas-wide Pdx1 expression. Molecular and cellular biology, 27(11), 4093-104. [PubMed:17403901] [PMC] [WorldCat] [DOI]
  60. Meredith, D.M., Borromeo, M.D., Deering, T.G., Casey, B.H., Savage, T.K., Mayer, P.R., ..., & Johnson, J.E. (2013).
    Program specificity for Ptf1a in pancreas versus neural tube development correlates with distinct collaborating cofactors and chromatin accessibility. Molecular and cellular biology, 33(16), 3166-79. [PubMed:23754747] [PMC] [WorldCat] [DOI]
  61. Schaffer, A.E., Freude, K.K., Nelson, S.B., & Sander, M. (2010).
    Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. Developmental cell, 18(6), 1022-9. [PubMed:20627083] [PMC] [WorldCat] [DOI]
  62. Ahnfelt-Rønne, J., Jørgensen, M.C., Klinck, R., Jensen, J.N., Füchtbauer, E.M., Deering, T., ..., & Serup, P. (2012).
    Ptf1a-mediated control of Dll1 reveals an alternative to the lateral inhibition mechanism. Development (Cambridge, England), 139(1), 33-45. [PubMed:22096075] [PMC] [WorldCat] [DOI]
  63. Mona, B., Avila, J.M., Meredith, D.M., Kollipara, R.K., & Johnson, J.E. (2016).
    Regulating the dorsal neural tube expression of Ptf1a through a distal 3' enhancer. Developmental biology, 418(1), 216-225. [PubMed:27350561] [PMC] [WorldCat] [DOI]
  64. Meredith, D.M., Masui, T., Swift, G.H., MacDonald, R.J., & Johnson, J.E. (2009).
    Multiple transcriptional mechanisms control Ptf1a levels during neural development including autoregulation by the PTF1-J complex. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29(36), 11139-48. [PubMed:19741120] [PMC] [WorldCat] [DOI]
  65. Liu, H., Kim, S.Y., Fu, Y., Wu, X., Ng, L., Swaroop, A., & Forrest, D. (2013).
    An isoform of retinoid-related orphan receptor β directs differentiation of retinal amacrine and horizontal interneurons. Nature communications, 4, 1813. [PubMed:23652001] [PMC] [WorldCat] [DOI]
  66. Ito, R., Kimura, A., Hirose, Y., Hatano, Y., Mima, A., Mae, S.I., ..., & Osafune, K. (2023).
    Elucidation of HHEX in pancreatic endoderm differentiation using a human iPSC differentiation model. Scientific reports, 13(1), 8659. [PubMed:37248264] [PMC] [WorldCat] [DOI]
  67. Millen, K.J., Steshina, E.Y., Iskusnykh, I.Y., & Chizhikov, V.V. (2014).
    Transformation of the cerebellum into more ventral brainstem fates causes cerebellar agenesis in the absence of Ptf1a function. Proceedings of the National Academy of Sciences of the United States of America, 111(17), E1777-86. [PubMed:24733890] [PMC] [WorldCat] [DOI]
  68. Huang, M., Huang, T., Xiang, Y., Xie, Z., Chen, Y., Yan, R., ..., & Cheng, L. (2008).
    Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Developmental biology, 322(2), 394-405. [PubMed:18634777] [WorldCat] [DOI]
  69. Bikoff, J.B., Gabitto, M.I., Rivard, A.F., Drobac, E., Machado, T.A., Miri, A., ..., & Jessell, T.M. (2016).
    Spinal Inhibitory Interneuron Diversity Delineates Variant Motor Microcircuits. Cell, 165(1), 207-219. [PubMed:26949184] [PMC] [WorldCat] [DOI]
  70. Zhang, J., Weinrich, J.A.P., Russ, J.B., Comer, J.D., Bommareddy, P.K., DiCasoli, R.J., ..., & Kaltschmidt, J.A. (2017).
    A Role for Dystonia-Associated Genes in Spinal GABAergic Interneuron Circuitry. Cell reports, 21(3), 666-678. [PubMed:29045835] [PMC] [WorldCat] [DOI]
  71. Escalante, A., & Klein, R. (2020).
    Spinal Inhibitory Ptf1a-Derived Neurons Prevent Self-Generated Itch. Cell reports, 33(8), 108422. [PubMed:33238109] [WorldCat] [DOI]
  72. Jusuf, P.R., & Harris, W.A. (2009).
    Ptf1a is expressed transiently in all types of amacrine cells in the embryonic zebrafish retina. Neural development, 4, 34. [PubMed:19732413] [PMC] [WorldCat] [DOI]
  73. Jusuf, P.R., Almeida, A.D., Randlett, O., Joubin, K., Poggi, L., & Harris, W.A. (2011).
    Origin and determination of inhibitory cell lineages in the vertebrate retina. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31(7), 2549-62. [PubMed:21325522] [PMC] [WorldCat] [DOI]
  74. Mazurier, N., Parain, K., Parlier, D., Pretto, S., Hamdache, J., Vernier, P., ..., & Perron, M. (2014).
    Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina. PloS one, 9(3), e92113. [PubMed:24643195] [PMC] [WorldCat] [DOI]
  75. Bessodes, N., Parain, K., Bronchain, O., Bellefroid, E.J., & Perron, M. (2017).
    Prdm13 forms a feedback loop with Ptf1a and is required for glycinergic amacrine cell genesis in the Xenopus Retina. Neural development, 12(1), 16. [PubMed:28863786] [PMC] [WorldCat] [DOI]
  76. Razy-Krajka, F., Brown, E.R., Horie, T., Callebert, J., Sasakura, Y., Joly, J.S., ..., & Vernier, P. (2012).
    Monoaminergic modulation of photoreception in ascidian: evidence for a proto-hypothalamo-retinal territory. BMC biology, 10, 45. [PubMed:22642675] [PMC] [WorldCat] [DOI]
  77. Maricich, S.M., Xia, A., Mathes, E.L., Wang, V.Y., Oghalai, J.S., Fritzsch, B., & Zoghbi, H.Y. (2009).
    Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29(36), 11123-33. [PubMed:19741118] [PMC] [WorldCat] [DOI]
  78. Bae, Y.K., Kani, S., Shimizu, T., Tanabe, K., Nojima, H., Kimura, Y., ..., & Hibi, M. (2009).
    Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Developmental biology, 330(2), 406-26. [PubMed:19371731] [WorldCat] [DOI]
  79. Elliott, K.L., Iskusnykh, I.Y., Chizhikov, V.V., & Fritzsch, B. (2023).
    Ptf1a expression is necessary for correct targeting of spiral ganglion neurons within the cochlear nuclei. Neuroscience letters, 806, 137244. [PubMed:37055006] [PMC] [WorldCat] [DOI]
  80. Iskusnykh, I.Y., Steshina, E.Y., & Chizhikov, V.V. (2016).
    Loss of Ptf1a Leads to a Widespread Cell-Fate Misspecification in the Brainstem, Affecting the Development of Somatosensory and Viscerosensory Nuclei. The Journal of neuroscience : the official journal of the Society for Neuroscience, 36(9), 2691-710. [PubMed:26937009] [PMC] [WorldCat] [DOI]
  81. Kohl, A., Hadas, Y., Klar, A., & Sela-Donenfeld, D. (2012).
    Axonal patterns and targets of dA1 interneurons in the chick hindbrain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(17), 5757-71. [PubMed:22539838] [PMC] [WorldCat] [DOI]
  82. Fukuda, A., Kawaguchi, Y., Furuyama, K., Kodama, S., Horiguchi, M., Kuhara, T., ..., & Uemoto, S. (2008).
    Reduction of Ptf1a gene dosage causes pancreatic hypoplasia and diabetes in mice. Diabetes, 57(9), 2421-31. [PubMed:18591390] [PMC] [WorldCat] [DOI]
  83. Sakikubo, M., Furuyama, K., Horiguchi, M., Hosokawa, S., Aoyama, Y., Tsuboi, K., ..., & Kawaguchi, Y. (2018).
    Ptf1a inactivation in adult pancreatic acinar cells causes apoptosis through activation of the endoplasmic reticulum stress pathway. Scientific reports, 8(1), 15812. [PubMed:30361559] [PMC] [WorldCat] [DOI]