「Test」の版間の差分

編集の要約なし
編集の要約なし
 
(同じ利用者による、間の30版が非表示)
1行目: 1行目:
成人発症眼筋型重症筋無力症
<ref name=Krapp1996><pubmed>8861960</pubmed></ref>
 
<ref name=Knoefler1996><pubmed>8703005</pubmed></ref>
眼筋型重症筋無力症の免疫療法は有効と思われるが、確立された免疫療法はない。日常生活動作に支障をきたしている外眼筋麻痺に対して、経口ステロイド療法よりもステロイドパルス療法の方が効果発現が早いとする報告がある<ref name=Ozawa2019><pubmed>31100651</pubmed></ref> 。複視がなく、眼瞼下垂だけを治療する場合はナファゾリン点眼が有効であることがある<ref name=Nagane2011><pubmed>21491460</pubmed></ref> 。α2アドレナリン受容体刺激薬であるナファゾリン点眼は、ミュラー筋の収縮を増強することによって眼瞼下垂を改善すると考えられている。眼瞼下垂に対する抗コリンエステラーゼ薬の効果は限定的で、その一つであるピリドスチグミンの有効率は20-50%である<ref name=Evoli2001><pubmed>11257479</pubmed></ref> 。薬物治療に反応しない場合は、眼瞼挙上術の適応となることがある<ref name=Shimizu2014><pubmed>Shimizu Y, Suzuki S, Nagasao T, et al. Surgical treatment for myasthenic blefaroptosis. Clin. Ophthalmol 2014; 8: 1859-67.</pubmed></ref>
<ref name=Rose2001><pubmed>11562365</pubmed></ref>
 
<ref name=Krapp1998><pubmed>9851981</pubmed></ref>
成人発症全身型重症筋無力症
<ref name=Kawaguchi2002><pubmed>12185368</pubmed></ref>
 
<ref name=Sellick2004><pubmed>15543146</pubmed></ref>
早期速効性治療戦略
<ref name=Sellick2003><pubmed>14514650</pubmed></ref>
成人発症重症筋無力症は完全寛解に至ることが少ないことが明らかになっているため、本邦の診療ガイドラインでは現実的な治療目標として「経口プレドニゾロン5mg/日以下で軽微症状(minimal manifastations: MM)レベル(5mgMM)」をより早期に達成することを掲げている<ref name=日本神経学会2014><pubmed>日本神経学会(監修),「重症筋無力症診療ガイドライン」作成委員会(編集).重症筋無力症診療ガイドライン2014,南江堂,2014.</pubmed></ref>
<ref name=Hoveyda1999><pubmed>10507728</pubmed></ref>
 
<ref name=Masui2008><pubmed>18606784</pubmed></ref>
2012年に行われた国内11施設による多施設共同研究では、本邦の経口ステロイドの投与方法による有効性や副作用発現の差異が明らかになった。本研究によると、経口ステロイド治療にあまり反応しない群において中等量以上の経口ステロイドを長期連用しても病状の好転が見込めないばかりか、副作用のために日常生活動作を阻害する懸念があると考えられた<ref name=Imai2015><pubmed>25155615</pubmed></ref>
<ref name=Pan2013><pubmed>23325761</pubmed></ref>
 
<ref name=Burlison2008><pubmed>18294628</pubmed></ref>
2015年に行われた国内13施設による多施設共同研究でも、高用量の経口ステロイドを重視する治療よりも、経口ステロイドは低用量にとどめ、早期からFK506などのカルシニューリン阻害薬を併用したり、早期から速効性のある血液浄化療法、免疫グロブリン静注療法、ステロイドパルス療法を組み合わせる早期速効性治療戦略(early fast-acting treatment strategy:EFT)の方が5mgMMをより早期に達成でき、しかも2年後あるいは3年後の予後も改善することが明らかになった<ref name=Imai2018><pubmed>29175893</pubmed></ref>
<ref name=AlShammari2011><pubmed>21749365</pubmed></ref>
 
<ref name=Adell2000><pubmed>10768861</pubmed></ref>
新ガイドラインでも、早期速効性治療戦略によって、重症筋無力症症状の早期改善と経口ステロイド量の抑制を図ることが成人発症全身型重症筋無力症治療指針として推奨されると思われる<ref name=Imai2020><pubmed>32982912</pubmed></ref>
<ref name=Masui2007><pubmed>17938243</pubmed></ref>
 
<ref name=Magnuson2013><pubmed>23823474</pubmed></ref>
胸腺摘除術
<ref name=Fujitani2017><pubmed>28420858</pubmed></ref>
AChR-MGの発症機序の一つとして、胸腺過形成、特に胸腺内のリンパ濾胞が増生するリンパ濾胞過形成(follicular hyperplasia)の関与が指摘されている。重症筋無力症の治療として、非胸腺腫でも胸腺摘除術が適応されるのは、この過形成胸腺が重症筋無力症の病因として感作されたAChR抗体の産生に関与しているという考えに基づいている。
<ref name=VeiteSchmahl2017><pubmed>28697176</pubmed></ref>
 
<ref name=Hingorani2003><pubmed>14706336</pubmed></ref>
最近まで重症筋無力症における胸腺摘除術の有効性について十分な根拠は示されていなかったが、2016年、非胸腺腫重症筋無力症を対象として初めて行われた国際共同ランダム化比較試験MG thymectomy (MGTX) studyの結果が公表された<ref name=Wolfe2016><pubmed>27509100</pubmed></ref> 。この研究では、重症筋無力症症例が胸腺摘除術+経口プレドニゾロン群(摘除群)と経口プレドニゾロン単独群(非摘除群)に割り付けられ、3年後のQMGスコアとプレドニゾロン量を主要評価項目として両群の差が検討された。摘除群の患者はQMGスコアで平均2.85ポイントの改善がみられ、経口プレドニゾロンの必要量が平均11mg/日少なかった(摘除群16mg/日、非摘除群27mg/日)。胸腺摘除を行なっても治療関連の合併症が増加することはなく、これらの有効性は5年後の長期評価でも確認された<ref name=Wolfe2019><pubmed>30692052</pubmed></ref>
<ref name=Obata2001><pubmed>11318877</pubmed></ref>
 
<ref name=Hoshino2005><pubmed>16039563</pubmed></ref>
しかしながら、MGTX studyの結果は胸腺摘除と経口プレドニゾロンの組み合わせだけでは容易に治療目標である5mgMMに到達しないことを示している。さらに、この研究には 50歳以上の症例が少数例しか含まれていなかった。臨床病型の項で記載したように、胸腺摘除術の効果が期待できる胸腺過形成を有する重症筋無力症患者が若年者に偏在していることも胸腺摘除術の適応を考える上で重要であろう。新ガイドラインでもLOMGに対する胸腺摘除術の適応は慎重に判断するように推奨される見込みである。
<ref name=Hoshino2006><pubmed>16997750</pubmed></ref>
 
<ref name=Wullimann2011><pubmed>21559349</pubmed></ref>
モノクローナル抗体による新たな治療法
<ref name=Yamada2014><pubmed>24695699</pubmed></ref>
既存の免疫治療では十分な効果が得られない症例に対して、新たな作用機序を持つモノクローナル抗体製剤の開発が進んでいる<ref name=Imai2019><pubmed>Imai T. Why is development of new treatments necessary for myasthenia gravis? - recent advances in clinical trials - Neurol Clin Neurosci 2019; 7: 161-5.
<ref name=Seto2014><pubmed>24535035</pubmed></ref>
https://doi.org/10.1111/ncn3.12301</pubmed></ref>
<ref name=Pascual2007><pubmed>17360405</pubmed></ref>
 
<ref name=Millen2008><pubmed>18513948</pubmed></ref>
エクリズマブ(eculizumab)とラブリズマブ(ravulizumab)は補体C5に対するヒト化モノクローナル抗体であり、補体介在性の運動終板の破壊を阻止し、AChR数を回復させる作用を持っている。Eculizumab よりも血中半減期が長く、より長時間作用型であるRavulizumabは現在治験中である。
<ref name=Achim2014><pubmed>24196748</pubmed></ref>
 
<ref name=Lowenstein2023><pubmed>35262281</pubmed></ref>
エフガルチギモド(efgartigimod)とロザノリキズマブ(rozanolixizumab)を含む胎児性Fc受容体(neonatal Fc receptor: FcRn)に対するモノクローナル抗体は、現在臨床治験が進行中である。FcRn抗体はIgGの分解抑制に関わるFcRnを介したリサイクリング機構を抑制することによって重症筋無力症の病原性自己抗体を含む全てのIgG濃度を低下させる。
<ref name=BenArie1997><pubmed>9367153</pubmed></ref>
 
<ref name=Machold2005><pubmed>16202705</pubmed></ref>
リツキシマブ(rituximab)などのヒトBリンパ球表面に存在する分化抗原に結合するモノクローナル抗体の有効性が検討されている。
<ref name=Wang2005><pubmed>16202707</pubmed></ref>
 
<ref name=Glasgow2005><pubmed>16291784</pubmed></ref>
小児期発症重症筋無力症
<ref name=Hori2012><pubmed>22830054</pubmed></ref>
 
<ref name=Fujitani2006><pubmed>17075007</pubmed></ref>
小児期発症重症筋無力症の臨床型は、眼筋型、潜在性全身型、全身型に分類され、それぞれ治療方針が異なる。潜在性全身型とは本邦で定義された臨床型であり、臨床的には眼症状のみであるが、電気生理学的検査で四肢筋に神経筋接合部障害が認められる重症筋無力症と定義される。眼筋型でも潜在性全身型でも、臨床的に眼症状のみの場合は、抗コリンエステラーゼ薬で治療を開始するが、効果がみられない場合は速やかにステロイド薬に切り替える。一般に、潜在性眼筋型の場合は抗コリンエステラーゼ薬の効果が乏しいので、治療開始早期からステロイド薬を投与することが多い。全身型では、初めからステロイド薬で治療を開始する。ステロイド薬の効果が乏しい時は、他の免疫抑制薬の投与や胸腺摘除術の適応を考慮する<ref name=日本神経学会2014><pubmed>日本神経学会(監修),「重症筋無力症診療ガイドライン」作成委員会(編集).重症筋無力症診療ガイドライン2014,南江堂,2014.</pubmed></ref>
<ref name=Nakhai2007><pubmed>17301087</pubmed></ref>
 
<ref name=Dullin2007><pubmed>17910758</pubmed></ref>
おわりに
<ref name=Fujiyama2009><pubmed>19439493</pubmed></ref>
 
<ref name=Yamada2007><pubmed>17928434</pubmed></ref>
重症筋無力症の病原性自己抗体は全てが明らかになっているわけではなく、現状では抗AChR抗体やMuSK抗体陽性重症筋無力症に比べて病原性自己抗体陰性重症筋無力症の診断が難しい。病原性自己抗体が明らかな場合でも、それぞれの自己抗体に特異的な治療法がないため、完全寛解が得難く、患者の生活の質を良好に保つために長期的な治療戦略を立てる必要に迫られている。これらの問題点を解決し、重症筋無力症の完全寛解率を上げる診療への進歩が望まれる。
<ref name=Aldinger2008><pubmed>18184775</pubmed></ref>
 
<ref name=Fujiyama2018><pubmed>29972793</pubmed></ref>
謝辞
<ref name=Horie2018><pubmed>30228204</pubmed></ref>
 
<ref name=Russ2015><pubmed>25878276</pubmed></ref>
病原性自己抗体の測定法や結果の解釈について、長崎総合科学大学工学部教授の本村政勝先生に重要な情報をいただきました。深謝いたします。
<ref name=Uhlen2015><pubmed>25613900</pubmed></ref>
 
<ref name=Duque2022><pubmed>34125483</pubmed></ref>
文献
<ref name=Beres2006><pubmed>16354684</pubmed></ref>
 
<ref name=Masui2010><pubmed>20398665</pubmed></ref>
 
<ref name=Hori2008><pubmed>18198335</pubmed></ref>
 
<ref name=Lelievre2011><pubmed>21839069</pubmed></ref>
図の説明
<ref name=Hanoun2014><pubmed>25355311</pubmed></ref>
 
<ref name=Rodolosse2009><pubmed>18834332</pubmed></ref>
図1.成人発症MGの新しい病型分類
<ref name=Jin2019><pubmed>30470852</pubmed></ref>
640例の成人発症MGを対象としたtwo-step cluster analysisと発症年齢解析の結果から、過形成胸腺MGがEOMGの主成分であり、眼筋型MGと胸腺異常のない抗AChR抗体陽性全身型MGがLOMGの主成分であると考えられた。(文献13より改変)
<ref name=Hanotel2014><pubmed>24370451</pubmed></ref>
<ref name=Whittaker2021><pubmed>34730112</pubmed></ref>
<ref name=Chang2013><pubmed>23639443</pubmed></ref>
<ref name=Watanabe2015><pubmed>25995483</pubmed></ref>
<ref name=Jin2015><pubmed>25966682</pubmed></ref>
<ref name=Nishida2010><pubmed>19887377</pubmed></ref>
<ref name=Henke2009><pubmed>19641016</pubmed></ref>
<ref name=Wiebe2007><pubmed>17403901</pubmed></ref>
<ref name=Meredith2013><pubmed>23754747</pubmed></ref>
<ref name=Schaffer2010><pubmed>20627083</pubmed></ref>
<ref name=AhnfeltRonne2012><pubmed>22096075</pubmed></ref>
<ref name=Mona2016><pubmed>27350561</pubmed></ref>
<ref name=Meredith2009><pubmed>19741120</pubmed></ref>
<ref name=Liu2013><pubmed>23652001</pubmed></ref>
<ref name=Ito2023><pubmed>37248264</pubmed></ref>
<ref name=Millen2014><pubmed>24733890</pubmed></ref>
<ref name=Huang2008><pubmed>18634777</pubmed></ref>
<ref name=Bikoff2016><pubmed>26949184</pubmed></ref>
<ref name=Zhang2017><pubmed>29045835</pubmed></ref>
<ref name=Escalante2020><pubmed>33238109</pubmed></ref>
<ref name=Jusuf2009><pubmed>19732413</pubmed></ref>
<ref name=Jusuf2011><pubmed>21325522</pubmed></ref>
<ref name=Mazurier2014><pubmed>24643195</pubmed></ref>
<ref name=Bessodes2017><pubmed>28863786</pubmed></ref>
<ref name=RazyKrajka2012><pubmed>22642675</pubmed></ref>
<ref name=Maricich2009><pubmed>19741118</pubmed></ref>
<ref name=Bae2009><pubmed>19371731</pubmed></ref>
<ref name=Elliott2023><pubmed>37055006</pubmed></ref>
<ref name=Iskusnykh2016><pubmed>26937009</pubmed></ref>
<ref name=Kohl2012><pubmed>22539838</pubmed></ref>
<ref name=Fukuda2008><pubmed>18591390</pubmed></ref>
<ref name=Sakikubo2018><pubmed>30361559</pubmed></ref>

2025年10月5日 (日) 12:12時点における最新版

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83]

  1. Krapp, A., Knöfler, M., Frutiger, S., Hughes, G.J., Hagenbüchle, O., & Wellauer, P.K. (1996).
    The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein. The EMBO journal, 15(16), 4317-29. [PubMed:8861960] [PMC] [WorldCat]
  2. Knöfler, M., Krapp, A., Hagenbüchle, O., & Wellauer, P.K. (1996).
    Constitutive expression of the gene for the cell-specific p48 DNA-binding subunit of pancreas transcription factor 1 in cultured cells is under control of binding sites for transcription factors Sp1 and alphaCbf. The Journal of biological chemistry, 271(36), 21993-2002. [PubMed:8703005] [WorldCat] [DOI]
  3. Rose, S.D., Swift, G.H., Peyton, M.J., Hammer, R.E., & MacDonald, R.J. (2001).
    The role of PTF1-P48 in pancreatic acinar gene expression. The Journal of biological chemistry, 276(47), 44018-26. [PubMed:11562365] [WorldCat] [DOI]
  4. Krapp, A., Knöfler, M., Ledermann, B., Bürki, K., Berney, C., Zoerkler, N., ..., & Wellauer, P.K. (1998).
    The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes & development, 12(23), 3752-63. [PubMed:9851981] [PMC] [WorldCat] [DOI]
  5. Kawaguchi, Y., Cooper, B., Gannon, M., Ray, M., MacDonald, R.J., & Wright, C.V. (2002).
    The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nature genetics, 32(1), 128-34. [PubMed:12185368] [WorldCat] [DOI]
  6. Sellick, G.S., Barker, K.T., Stolte-Dijkstra, I., Fleischmann, C., Coleman, R.J., Garrett, C., ..., & Houlston, R.S. (2004).
    Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nature genetics, 36(12), 1301-5. [PubMed:15543146] [WorldCat] [DOI]
  7. Sellick, G.S., Garrett, C., & Houlston, R.S. (2003).
    A novel gene for neonatal diabetes maps to chromosome 10p12.1-p13. Diabetes, 52(10), 2636-8. [PubMed:14514650] [WorldCat] [DOI]
  8. Hoveyda, N., Shield, J.P., Garrett, C., Chong, W.K., Beardsall, K., Bentsi-Enchill, E., ..., & Thompson, M.H. (1999).
    Neonatal diabetes mellitus and cerebellar hypoplasia/agenesis: report of a new recessive syndrome. Journal of medical genetics, 36(9), 700-4. [PubMed:10507728] [PMC] [WorldCat]
  9. Masui, T., Swift, G.H., Hale, M.A., Meredith, D.M., Johnson, J.E., & Macdonald, R.J. (2008).
    Transcriptional autoregulation controls pancreatic Ptf1a expression during development and adulthood. Molecular and cellular biology, 28(17), 5458-68. [PubMed:18606784] [PMC] [WorldCat] [DOI]
  10. Pan, F.C., Bankaitis, E.D., Boyer, D., Xu, X., Van de Casteele, M., Magnuson, M.A., ..., & Wright, C.V. (2013).
    Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development (Cambridge, England), 140(4), 751-64. [PubMed:23325761] [PMC] [WorldCat] [DOI]
  11. Burlison, J.S., Long, Q., Fujitani, Y., Wright, C.V., & Magnuson, M.A. (2008).
    Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells. Developmental biology, 316(1), 74-86. [PubMed:18294628] [PMC] [WorldCat] [DOI]
  12. Al-Shammari, M., Al-Husain, M., Al-Kharfy, T., & Alkuraya, F.S. (2011).
    A novel PTF1A mutation in a patient with severe pancreatic and cerebellar involvement. Clinical genetics, 80(2), 196-8. [PubMed:21749365] [WorldCat] [DOI]
  13. Adell, T., Gómez-Cuadrado, A., Skoudy, A., Pettengill, O.S., Longnecker, D.S., & Real, F.X. (2000).
    Role of the basic helix-loop-helix transcription factor p48 in the differentiation phenotype of exocrine pancreas cancer cells. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research, 11(3), 137-47. [PubMed:10768861] [WorldCat]
  14. Masui, T., Long, Q., Beres, T.M., Magnuson, M.A., & MacDonald, R.J. (2007).
    Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex. Genes & development, 21(20), 2629-43. [PubMed:17938243] [PMC] [WorldCat] [DOI]
  15. Magnuson, M.A., & Osipovich, A.B. (2013).
    Pancreas-specific Cre driver lines and considerations for their prudent use. Cell metabolism, 18(1), 9-20. [PubMed:23823474] [PMC] [WorldCat] [DOI]
  16. Fujitani, Y. (2017).
    Transcriptional regulation of pancreas development and β-cell function [Review]. Endocrine journal, 64(5), 477-486. [PubMed:28420858] [WorldCat] [DOI]
  17. Veite-Schmahl, M.J., Joesten, W.C., & Kennedy, M.A. (2017).
    HMGA1 expression levels are elevated in pancreatic intraepithelial neoplasia cells in the Ptf1a-Cre; LSL-KrasG12D transgenic mouse model of pancreatic cancer. British journal of cancer, 117(5), 639-647. [PubMed:28697176] [PMC] [WorldCat] [DOI]
  18. Hingorani, S.R., Petricoin, E.F., Maitra, A., Rajapakse, V., King, C., Jacobetz, M.A., ..., & Tuveson, D.A. (2003).
    Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer cell, 4(6), 437-50. [PubMed:14706336] [WorldCat] [DOI]
  19. Obata, J., Yano, M., Mimura, H., Goto, T., Nakayama, R., Mibu, Y., ..., & Kawaichi, M. (2001).
    p48 subunit of mouse PTF1 binds to RBP-Jkappa/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos. Genes to cells : devoted to molecular & cellular mechanisms, 6(4), 345-60. [PubMed:11318877] [WorldCat] [DOI]
  20. Hoshino, M., Nakamura, S., Mori, K., Kawauchi, T., Terao, M., Nishimura, Y.V., ..., & Nabeshima, Y. (2005).
    Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron, 47(2), 201-13. [PubMed:16039563] [WorldCat] [DOI]
  21. Hoshino, M. (2006).
    Molecular machinery governing GABAergic neuron specification in the cerebellum. Cerebellum (London, England), 5(3), 193-8. [PubMed:16997750] [WorldCat] [DOI]
  22. Wullimann, M.F., Mueller, T., Distel, M., Babaryka, A., Grothe, B., & Köster, R.W. (2011).
    The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis. Frontiers in neuroanatomy, 5, 27. [PubMed:21559349] [PMC] [WorldCat] [DOI]
  23. Yamada, M., Seto, Y., Taya, S., Owa, T., Inoue, Y.U., Inoue, T., ..., & Hoshino, M. (2014).
    Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience, 34(14), 4786-800. [PubMed:24695699] [PMC] [WorldCat] [DOI]
  24. Seto, Y., Nakatani, T., Masuyama, N., Taya, S., Kumai, M., Minaki, Y., ..., & Hoshino, M. (2014).
    Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nature communications, 5, 3337. [PubMed:24535035] [PMC] [WorldCat] [DOI]
  25. Pascual, M., Abasolo, I., Mingorance-Le Meur, A., Martínez, A., Del Rio, J.A., Wright, C.V., ..., & Soriano, E. (2007).
    Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proceedings of the National Academy of Sciences of the United States of America, 104(12), 5193-8. [PubMed:17360405] [PMC] [WorldCat] [DOI]
  26. Millen, K.J., & Gleeson, J.G. (2008).
    Cerebellar development and disease. Current opinion in neurobiology, 18(1), 12-9. [PubMed:18513948] [PMC] [WorldCat] [DOI]
  27. Achim, K., Salminen, M., & Partanen, J. (2014).
    Mechanisms regulating GABAergic neuron development. Cellular and molecular life sciences : CMLS, 71(8), 1395-415. [PubMed:24196748] [PMC] [WorldCat] [DOI]
  28. Lowenstein, E.D., Cui, K., & Hernandez-Miranda, L.R. (2023).
    Regulation of early cerebellar development. The FEBS journal, 290(11), 2786-2804. [PubMed:35262281] [WorldCat] [DOI]
  29. Ben-Arie, N., Bellen, H.J., Armstrong, D.L., McCall, A.E., Gordadze, P.R., Guo, Q., ..., & Zoghbi, H.Y. (1997).
    Math1 is essential for genesis of cerebellar granule neurons. Nature, 390(6656), 169-72. [PubMed:9367153] [WorldCat] [DOI]
  30. Machold, R., & Fishell, G. (2005).
    Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron, 48(1), 17-24. [PubMed:16202705] [WorldCat] [DOI]
  31. Wang, V.Y., Rose, M.F., & Zoghbi, H.Y. (2005).
    Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron, 48(1), 31-43. [PubMed:16202707] [WorldCat] [DOI]
  32. Glasgow, S.M., Henke, R.M., Macdonald, R.J., Wright, C.V., & Johnson, J.E. (2005).
    Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development (Cambridge, England), 132(24), 5461-9. [PubMed:16291784] [WorldCat] [DOI]
  33. Hori, K., & Hoshino, M. (2012).
    GABAergic neuron specification in the spinal cord, the cerebellum, and the cochlear nucleus. Neural plasticity, 2012, 921732. [PubMed:22830054] [PMC] [WorldCat] [DOI]
  34. Fujitani, Y., Fujitani, S., Luo, H., Qiu, F., Burlison, J., Long, Q., ..., & Wright, C.V. (2006).
    Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development (Cambridge, England), 133(22), 4439-50. [PubMed:17075007] [WorldCat] [DOI]
  35. Nakhai, H., Sel, S., Favor, J., Mendoza-Torres, L., Paulsen, F., Duncker, G.I., & Schmid, R.M. (2007).
    Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development (Cambridge, England), 134(6), 1151-60. [PubMed:17301087] [WorldCat] [DOI]
  36. Dullin, J.P., Locker, M., Robach, M., Henningfeld, K.A., Parain, K., Afelik, S., ..., & Perron, M. (2007).
    Ptf1a triggers GABAergic neuronal cell fates in the retina. BMC developmental biology, 7, 110. [PubMed:17910758] [PMC] [WorldCat] [DOI]
  37. Fujiyama, T., Yamada, M., Terao, M., Terashima, T., Hioki, H., Inoue, Y.U., ..., & Hoshino, M. (2009).
    Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. Development (Cambridge, England), 136(12), 2049-58. [PubMed:19439493] [WorldCat] [DOI]
  38. Yamada, M., Terao, M., Terashima, T., Fujiyama, T., Kawaguchi, Y., Nabeshima, Y., & Hoshino, M. (2007).
    Origin of climbing fiber neurons and their developmental dependence on Ptf1a. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(41), 10924-34. [PubMed:17928434] [PMC] [WorldCat] [DOI]
  39. Aldinger, K.A., & Elsen, G.E. (2008).
    Ptf1a is a molecular determinant for both glutamatergic and GABAergic neurons in the hindbrain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(2), 338-9. [PubMed:18184775] [PMC] [WorldCat] [DOI]
  40. Fujiyama, T., Miyashita, S., Tsuneoka, Y., Kanemaru, K., Kakizaki, M., Kanno, S., ..., & Hoshino, M. (2018).
    Forebrain Ptf1a Is Required for Sexual Differentiation of the Brain. Cell reports, 24(1), 79-94. [PubMed:29972793] [WorldCat] [DOI]
  41. Horie, T., Horie, R., Chen, K., Cao, C., Nakagawa, M., Kusakabe, T.G., ..., & Levine, M. (2018).
    Regulatory cocktail for dopaminergic neurons in a protovertebrate identified by whole-embryo single-cell transcriptomics. Genes & development, 32(19-20), 1297-1302. [PubMed:30228204] [PMC] [WorldCat] [DOI]
  42. Russ, J.B., Borromeo, M.D., Kollipara, R.K., Bommareddy, P.K., Johnson, J.E., & Kaltschmidt, J.A. (2015).
    Misexpression of ptf1a in cortical pyramidal cells in vivo promotes an inhibitory peptidergic identity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 35(15), 6028-37. [PubMed:25878276] [PMC] [WorldCat] [DOI]
  43. Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., ..., & Pontén, F. (2015).
    Proteomics. Tissue-based map of the human proteome. Science (New York, N.Y.), 347(6220), 1260419. [PubMed:25613900] [WorldCat] [DOI]
  44. Duque, M., Amorim, J.P., & Bessa, J. (2022).
    Ptf1a function and transcriptional cis-regulation, a cornerstone in vertebrate pancreas development. The FEBS journal, 289(17), 5121-5136. [PubMed:34125483] [PMC] [WorldCat] [DOI]
  45. Beres, T.M., Masui, T., Swift, G.H., Shi, L., Henke, R.M., & MacDonald, R.J. (2006).
    PTF1 is an organ-specific and Notch-independent basic helix-loop-helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. Molecular and cellular biology, 26(1), 117-30. [PubMed:16354684] [PMC] [WorldCat] [DOI]
  46. Masui, T., Swift, G.H., Deering, T., Shen, C., Coats, W.S., Long, Q., ..., & MacDonald, R.J. (2010).
    Replacement of Rbpj with Rbpjl in the PTF1 complex controls the final maturation of pancreatic acinar cells. Gastroenterology, 139(1), 270-80. [PubMed:20398665] [PMC] [WorldCat] [DOI]
  47. Hori, K., Cholewa-Waclaw, J., Nakada, Y., Glasgow, S.M., Masui, T., Henke, R.M., ..., & Johnson, J.E. (2008).
    A nonclassical bHLH Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling. Genes & development, 22(2), 166-78. [PubMed:18198335] [PMC] [WorldCat] [DOI]
  48. Lelièvre, E.C., Lek, M., Boije, H., Houille-Vernes, L., Brajeul, V., Slembrouck, A., ..., & Guillonneau, X. (2011).
    Ptf1a/Rbpj complex inhibits ganglion cell fate and drives the specification of all horizontal cell subtypes in the chick retina. Developmental biology, 358(2), 296-308. [PubMed:21839069] [WorldCat] [DOI]
  49. Hanoun, N., Fritsch, S., Gayet, O., Gigoux, V., Cordelier, P., Dusetti, N., ..., & Dufresne, M. (2014).
    The E3 ubiquitin ligase thyroid hormone receptor-interacting protein 12 targets pancreas transcription factor 1a for proteasomal degradation. The Journal of biological chemistry, 289(51), 35593-604. [PubMed:25355311] [PMC] [WorldCat] [DOI]
  50. Rodolosse, A., Campos, M.L., Rooman, I., Lichtenstein, M., & Real, F.X. (2009).
    p/CAF modulates the activity of the transcription factor p48/Ptf1a involved in pancreatic acinar differentiation. The Biochemical journal, 418(2), 463-73. [PubMed:18834332] [WorldCat] [DOI]
  51. Jin, K., & Xiang, M. (2019).
    Transcription factor Ptf1a in development, diseases and reprogramming. Cellular and molecular life sciences : CMLS, 76(5), 921-940. [PubMed:30470852] [PMC] [WorldCat] [DOI]
  52. Hanotel, J., Bessodes, N., Thélie, A., Hedderich, M., Parain, K., Van Driessche, B., ..., & Bellefroid, E.J. (2014).
    The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. Developmental biology, 386(2), 340-57. [PubMed:24370451] [WorldCat] [DOI]
  53. Whittaker, D.E., Oleari, R., Gregory, L.C., Le Quesne-Stabej, P., Williams, H.J., GOSgene, ..., & Dattani, M.T. (2021).
    A recessive PRDM13 mutation results in congenital hypogonadotropic hypogonadism and cerebellar hypoplasia. The Journal of clinical investigation, 131(24). [PubMed:34730112] [PMC] [WorldCat] [DOI]
  54. Chang, J.C., Meredith, D.M., Mayer, P.R., Borromeo, M.D., Lai, H.C., Ou, Y.H., & Johnson, J.E. (2013).
    Prdm13 mediates the balance of inhibitory and excitatory neurons in somatosensory circuits. Developmental cell, 25(2), 182-95. [PubMed:23639443] [PMC] [WorldCat] [DOI]
  55. Watanabe, S., Sanuki, R., Sugita, Y., Imai, W., Yamazaki, R., Kozuka, T., ..., & Furukawa, T. (2015).
    Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 35(20), 8004-20. [PubMed:25995483] [PMC] [WorldCat] [DOI]
  56. Jin, K., Jiang, H., Xiao, D., Zou, M., Zhu, J., & Xiang, M. (2015).
    Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Molecular brain, 8, 28. [PubMed:25966682] [PMC] [WorldCat] [DOI]
  57. Nishida, K., Hoshino, M., Kawaguchi, Y., & Murakami, F. (2010).
    Ptf1a directly controls expression of immunoglobulin superfamily molecules Nephrin and Neph3 in the developing central nervous system. The Journal of biological chemistry, 285(1), 373-80. [PubMed:19887377] [PMC] [WorldCat] [DOI]
  58. Henke, R.M., Savage, T.K., Meredith, D.M., Glasgow, S.M., Hori, K., Dumas, J., ..., & Johnson, J.E. (2009).
    Neurog2 is a direct downstream target of the Ptf1a-Rbpj transcription complex in dorsal spinal cord. Development (Cambridge, England), 136(17), 2945-54. [PubMed:19641016] [PMC] [WorldCat] [DOI]
  59. Wiebe, P.O., Kormish, J.D., Roper, V.T., Fujitani, Y., Alston, N.I., Zaret, K.S., ..., & Gannon, M. (2007).
    Ptf1a binds to and activates area III, a highly conserved region of the Pdx1 promoter that mediates early pancreas-wide Pdx1 expression. Molecular and cellular biology, 27(11), 4093-104. [PubMed:17403901] [PMC] [WorldCat] [DOI]
  60. Meredith, D.M., Borromeo, M.D., Deering, T.G., Casey, B.H., Savage, T.K., Mayer, P.R., ..., & Johnson, J.E. (2013).
    Program specificity for Ptf1a in pancreas versus neural tube development correlates with distinct collaborating cofactors and chromatin accessibility. Molecular and cellular biology, 33(16), 3166-79. [PubMed:23754747] [PMC] [WorldCat] [DOI]
  61. Schaffer, A.E., Freude, K.K., Nelson, S.B., & Sander, M. (2010).
    Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. Developmental cell, 18(6), 1022-9. [PubMed:20627083] [PMC] [WorldCat] [DOI]
  62. Ahnfelt-Rønne, J., Jørgensen, M.C., Klinck, R., Jensen, J.N., Füchtbauer, E.M., Deering, T., ..., & Serup, P. (2012).
    Ptf1a-mediated control of Dll1 reveals an alternative to the lateral inhibition mechanism. Development (Cambridge, England), 139(1), 33-45. [PubMed:22096075] [PMC] [WorldCat] [DOI]
  63. Mona, B., Avila, J.M., Meredith, D.M., Kollipara, R.K., & Johnson, J.E. (2016).
    Regulating the dorsal neural tube expression of Ptf1a through a distal 3' enhancer. Developmental biology, 418(1), 216-225. [PubMed:27350561] [PMC] [WorldCat] [DOI]
  64. Meredith, D.M., Masui, T., Swift, G.H., MacDonald, R.J., & Johnson, J.E. (2009).
    Multiple transcriptional mechanisms control Ptf1a levels during neural development including autoregulation by the PTF1-J complex. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29(36), 11139-48. [PubMed:19741120] [PMC] [WorldCat] [DOI]
  65. Liu, H., Kim, S.Y., Fu, Y., Wu, X., Ng, L., Swaroop, A., & Forrest, D. (2013).
    An isoform of retinoid-related orphan receptor β directs differentiation of retinal amacrine and horizontal interneurons. Nature communications, 4, 1813. [PubMed:23652001] [PMC] [WorldCat] [DOI]
  66. Ito, R., Kimura, A., Hirose, Y., Hatano, Y., Mima, A., Mae, S.I., ..., & Osafune, K. (2023).
    Elucidation of HHEX in pancreatic endoderm differentiation using a human iPSC differentiation model. Scientific reports, 13(1), 8659. [PubMed:37248264] [PMC] [WorldCat] [DOI]
  67. Millen, K.J., Steshina, E.Y., Iskusnykh, I.Y., & Chizhikov, V.V. (2014).
    Transformation of the cerebellum into more ventral brainstem fates causes cerebellar agenesis in the absence of Ptf1a function. Proceedings of the National Academy of Sciences of the United States of America, 111(17), E1777-86. [PubMed:24733890] [PMC] [WorldCat] [DOI]
  68. Huang, M., Huang, T., Xiang, Y., Xie, Z., Chen, Y., Yan, R., ..., & Cheng, L. (2008).
    Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Developmental biology, 322(2), 394-405. [PubMed:18634777] [WorldCat] [DOI]
  69. Bikoff, J.B., Gabitto, M.I., Rivard, A.F., Drobac, E., Machado, T.A., Miri, A., ..., & Jessell, T.M. (2016).
    Spinal Inhibitory Interneuron Diversity Delineates Variant Motor Microcircuits. Cell, 165(1), 207-219. [PubMed:26949184] [PMC] [WorldCat] [DOI]
  70. Zhang, J., Weinrich, J.A.P., Russ, J.B., Comer, J.D., Bommareddy, P.K., DiCasoli, R.J., ..., & Kaltschmidt, J.A. (2017).
    A Role for Dystonia-Associated Genes in Spinal GABAergic Interneuron Circuitry. Cell reports, 21(3), 666-678. [PubMed:29045835] [PMC] [WorldCat] [DOI]
  71. Escalante, A., & Klein, R. (2020).
    Spinal Inhibitory Ptf1a-Derived Neurons Prevent Self-Generated Itch. Cell reports, 33(8), 108422. [PubMed:33238109] [WorldCat] [DOI]
  72. Jusuf, P.R., & Harris, W.A. (2009).
    Ptf1a is expressed transiently in all types of amacrine cells in the embryonic zebrafish retina. Neural development, 4, 34. [PubMed:19732413] [PMC] [WorldCat] [DOI]
  73. Jusuf, P.R., Almeida, A.D., Randlett, O., Joubin, K., Poggi, L., & Harris, W.A. (2011).
    Origin and determination of inhibitory cell lineages in the vertebrate retina. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31(7), 2549-62. [PubMed:21325522] [PMC] [WorldCat] [DOI]
  74. Mazurier, N., Parain, K., Parlier, D., Pretto, S., Hamdache, J., Vernier, P., ..., & Perron, M. (2014).
    Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina. PloS one, 9(3), e92113. [PubMed:24643195] [PMC] [WorldCat] [DOI]
  75. Bessodes, N., Parain, K., Bronchain, O., Bellefroid, E.J., & Perron, M. (2017).
    Prdm13 forms a feedback loop with Ptf1a and is required for glycinergic amacrine cell genesis in the Xenopus Retina. Neural development, 12(1), 16. [PubMed:28863786] [PMC] [WorldCat] [DOI]
  76. Razy-Krajka, F., Brown, E.R., Horie, T., Callebert, J., Sasakura, Y., Joly, J.S., ..., & Vernier, P. (2012).
    Monoaminergic modulation of photoreception in ascidian: evidence for a proto-hypothalamo-retinal territory. BMC biology, 10, 45. [PubMed:22642675] [PMC] [WorldCat] [DOI]
  77. Maricich, S.M., Xia, A., Mathes, E.L., Wang, V.Y., Oghalai, J.S., Fritzsch, B., & Zoghbi, H.Y. (2009).
    Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29(36), 11123-33. [PubMed:19741118] [PMC] [WorldCat] [DOI]
  78. Bae, Y.K., Kani, S., Shimizu, T., Tanabe, K., Nojima, H., Kimura, Y., ..., & Hibi, M. (2009).
    Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Developmental biology, 330(2), 406-26. [PubMed:19371731] [WorldCat] [DOI]
  79. Elliott, K.L., Iskusnykh, I.Y., Chizhikov, V.V., & Fritzsch, B. (2023).
    Ptf1a expression is necessary for correct targeting of spiral ganglion neurons within the cochlear nuclei. Neuroscience letters, 806, 137244. [PubMed:37055006] [PMC] [WorldCat] [DOI]
  80. Iskusnykh, I.Y., Steshina, E.Y., & Chizhikov, V.V. (2016).
    Loss of Ptf1a Leads to a Widespread Cell-Fate Misspecification in the Brainstem, Affecting the Development of Somatosensory and Viscerosensory Nuclei. The Journal of neuroscience : the official journal of the Society for Neuroscience, 36(9), 2691-710. [PubMed:26937009] [PMC] [WorldCat] [DOI]
  81. Kohl, A., Hadas, Y., Klar, A., & Sela-Donenfeld, D. (2012).
    Axonal patterns and targets of dA1 interneurons in the chick hindbrain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(17), 5757-71. [PubMed:22539838] [PMC] [WorldCat] [DOI]
  82. Fukuda, A., Kawaguchi, Y., Furuyama, K., Kodama, S., Horiguchi, M., Kuhara, T., ..., & Uemoto, S. (2008).
    Reduction of Ptf1a gene dosage causes pancreatic hypoplasia and diabetes in mice. Diabetes, 57(9), 2421-31. [PubMed:18591390] [PMC] [WorldCat] [DOI]
  83. Sakikubo, M., Furuyama, K., Horiguchi, M., Hosokawa, S., Aoyama, Y., Tsuboi, K., ..., & Kawaguchi, Y. (2018).
    Ptf1a inactivation in adult pancreatic acinar cells causes apoptosis through activation of the endoplasmic reticulum stress pathway. Scientific reports, 8(1), 15812. [PubMed:30361559] [PMC] [WorldCat] [DOI]