「プロモーター」の版間の差分

33行目: 33行目:


== エピジェネティクス制御 ==
== エピジェネティクス制御 ==
 転写制御は転写調節因子、転写基本因子、転写仲介因子やコファクターの間でのタンパク質間相互作用によってのみ制御されるわけではない。プロモーター周辺領域の[[エピジェネティクス]]制御も転写制御に必須であることが1990年代の中頃から明らかにされた<ref name=ref1 /><ref name=ref7 />。具体的には、DNAと結合してクロマチン構造を形成する[[ヒストン]]群の翻訳後修飾、すなわち、[[アセチル化]](脱アセチル化)、[[メチル化]](脱メチル化)、リン酸化(脱リン酸化)を介して、プロモーター付近のクロマチン構造の変換(クロマチンリモデリンング)が行われる。このクロマチンリモデリングがプロモーターからの転写開始の効率、すなわち、転写を制御するタンパク質群のプロモーター領域への集合に大きく影響を及ぼしていると考えられている<ref name=ref1 /><ref name=ref7 />。以上のようなヒストンの翻訳後修飾にも多様性が観察されることから、ヒストンの修飾状態は「ヒストンコード」と呼ばれ、DNAの塩基配列情報の如く、ヒストンの修飾パターンが何らかの暗号的意味を持つのではないかと考えられている<ref name=ref15><pubmed> 11498575 </pubmed>。また、CLOCKなどのアクティベーター<ref name=ref16><pubmed> 16678094 </pubmed>、CBP/p300、PCAFなどのコアクティベーターはヒストンアセチル化酵素活性を有すること<ref name=ref17><pubmed> 9296499 </pubmed><ref name=ref18><pubmed> 11559745 </pubmed>、一方、Sin3などのコリプレッサーは[[ヒストン脱アセチル化酵素]]活性を示すことが明らかにされており<ref name=ref19><pubmed> 9139820 </pubmed>、このような[[転写因子]]群がプロモーター付近のヒストンリモデリングを直接制御する。
 転写制御は転写調節因子、転写基本因子、転写仲介因子やコファクターの間でのタンパク質間相互作用によってのみ制御されるわけではない。プロモーター周辺領域の[[エピジェネティクス]]制御も転写制御に必須であることが1990年代の中頃から明らかにされた<ref name=ref1 /><ref name=ref7 />。具体的には、DNAと結合してクロマチン構造を形成する[[ヒストン]]群の翻訳後修飾、すなわち、[[アセチル化]](脱アセチル化)、[[メチル化]](脱メチル化)、リン酸化(脱リン酸化)を介して、プロモーター付近のクロマチン構造の変換(クロマチンリモデリンング)が行われる。このクロマチンリモデリングがプロモーターからの転写開始の効率、すなわち、転写を制御するタンパク質群のプロモーター領域への集合に大きく影響を及ぼしていると考えられている<ref name=ref1 /><ref name=ref7 />。以上のようなヒストンの翻訳後修飾にも多様性が観察されることから、ヒストンの修飾状態は「ヒストンコード」と呼ばれ、DNAの塩基配列情報の如く、ヒストンの修飾パターンが何らかの暗号的意味を持つのではないかと考えられている<ref name=ref15><pubmed> 11498575 </pubmed></ref>。また、CLOCKなどのアクティベーター<ref name=ref16><pubmed> 16678094 </pubmed></ref>、CBP/p300、PCAFなどのコアクティベーターはヒストンアセチル化酵素活性を有すること<ref name=ref17><pubmed> 9296499 </pubmed></ref><ref name=ref18><pubmed> 11559745 </pubmed></ref>、一方、Sin3などのコリプレッサーは[[ヒストン脱アセチル化酵素]]活性を示すことが明らかにされており<ref name=ref19><pubmed> 9139820 </pubmed></ref>、このような[[転写因子]]群がプロモーター付近のヒストンリモデリングを直接制御する。


 一方、このエピジェネティクス制御はヒストンばかりではなく、DNAにおいても観察される。DNAのメチル化はCpGアイランドのシトシンに多く観察されており、メチル化に富んだプロモーターは不活性化状態となり、その遺伝子からの転写が抑制される<ref name=ref1 /><ref name=ref7 />。DNAメチル化による転写不活性化はインプリンティング、X染色体不活性化を代表として、恒常的な転写制御に関与するものと考えられている。
 一方、このエピジェネティクス制御はヒストンばかりではなく、DNAにおいても観察される。DNAのメチル化はCpGアイランドのシトシンに多く観察されており、メチル化に富んだプロモーターは不活性化状態となり、その遺伝子からの転写が抑制される<ref name=ref1 /><ref name=ref7 />。DNAメチル化による転写不活性化はインプリンティング、X染色体不活性化を代表として、恒常的な転写制御に関与するものと考えられている。
41行目: 41行目:
==脳科学研究領域におけるプロモーターの応用==
==脳科学研究領域におけるプロモーターの応用==


 αCaMKIIプロモーターは遺伝子操作[[マウス]]作製に広く利用されている<ref name=ref14 />。これ以外には、外来遺伝子の発現をGABAニューロンに限定されるためのGAD67プロモーター<ref name=ref20><pubmed> 16088032 </pubmed>、[[ドーパミン]]産生ニューロンに限定させるためのチロシンヒドロキシラーゼプロモーター<ref name=ref21><pubmed> 22153370 </pubmed>、受容体D1あるいはD2発現ニューロンに限定させるためのD1及びD2受容体プロモーターなどが利用されている<ref name=ref22><pubmed> 20613723 </pubmed>。一方、神経活動依存的遺伝子発現の活性化をモニターする、あるいは、遺伝子発現が誘導されたニューロンを標識するためのツールとして、c−fos遺伝子あるいはArc遺伝子のプロモーターが利用されている<ref name=ref8><pubmed> 11559745 </pubmed><ref name=ref23><pubmed> 17761885 </pubmed>。以上のプロモーター群は脳科学領域における強力な遺伝学的手法のツールとなっている。
 αCaMKIIプロモーターは遺伝子操作[[マウス]]作製に広く利用されている<ref name=ref14 />。これ以外には、外来遺伝子の発現をGABAニューロンに限定されるためのGAD67プロモーター<ref name=ref20><pubmed> 16088032 </pubmed></ref>、[[ドーパミン]]産生ニューロンに限定させるためのチロシンヒドロキシラーゼプロモーター<ref name=ref21><pubmed> 22153370 </pubmed></ref>、受容体D1あるいはD2発現ニューロンに限定させるためのD1及びD2受容体プロモーターなどが利用されている<ref name=ref22><pubmed> 20613723 </pubmed></ref>。一方、神経活動依存的遺伝子発現の活性化をモニターする、あるいは、遺伝子発現が誘導されたニューロンを標識するためのツールとして、c−fos遺伝子あるいはArc遺伝子のプロモーターが利用されている<ref name=ref8><pubmed> 11559745 </pubmed><ref name=ref23><pubmed> 17761885 </pubmed></ref>。以上のプロモーター群は脳科学領域における強力な遺伝学的手法のツールとなっている。


==参考文献==
==参考文献==
<references />
<references />