「長期増強」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
16行目: 16行目:


 1966年の北欧での学会で、[[w:Terje_Lømo|Lømo]]により海馬[[歯状回]]でのシナプス伝達効率が高頻度刺激により長時間にわたって増強される現象、すなわちLTPの存在、が初めて報告された<ref name=Lømo1966>'''Lømo, T. (1966).'''<br>Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiol. Scand. 68 (Suppl. 277): 128</ref>。これを体系的にまとめたのがBlissとLømoによる1973年の論文である<ref name=Bliss1973a><pubmed>4727084</pubmed></ref>。これらの研究では、麻酔下の[[ウサギ]]海馬歯状回から[[ガラス管微小電極]]を用いて興奮性シナプス応答を記録し、歯状回への入力線維である[[貫通線維]](perforant path)を高頻度で刺激することによってLTPが誘導されることが示されたが、より生理的条件に近い無麻酔のウサギにおいても同様の現象が誘導できることも同時に報告された<ref name=Bliss1973b><pubmed>4727085</pubmed></ref>。さらに、LTPが記憶形成を十分説明しうるだけの持続時間を示すことなどから、記憶・学習との関連性が指摘され、その発生機序を明らかにする研究がその後展開されることになった。
 1966年の北欧での学会で、[[w:Terje_Lømo|Lømo]]により海馬[[歯状回]]でのシナプス伝達効率が高頻度刺激により長時間にわたって増強される現象、すなわちLTPの存在、が初めて報告された<ref name=Lømo1966>'''Lømo, T. (1966).'''<br>Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiol. Scand. 68 (Suppl. 277): 128</ref>。これを体系的にまとめたのがBlissとLømoによる1973年の論文である<ref name=Bliss1973a><pubmed>4727084</pubmed></ref>。これらの研究では、麻酔下の[[ウサギ]]海馬歯状回から[[ガラス管微小電極]]を用いて興奮性シナプス応答を記録し、歯状回への入力線維である[[貫通線維]](perforant path)を高頻度で刺激することによってLTPが誘導されることが示されたが、より生理的条件に近い無麻酔のウサギにおいても同様の現象が誘導できることも同時に報告された<ref name=Bliss1973b><pubmed>4727085</pubmed></ref>。さらに、LTPが記憶形成を十分説明しうるだけの持続時間を示すことなどから、記憶・学習との関連性が指摘され、その発生機序を明らかにする研究がその後展開されることになった。
 
[[ファイル:Kobayashi LTP Fig1.png|サムネイル|'''図1. シナプス後性LTP'''<br>
シャッファー側枝-CA1シナプスにおけるシナプス後性LTPの例。上段はテタヌス刺激前後の興奮性シナプス後電位(excitatory postsynaptic potential: EPSP)の傾き(EPSP slope) の経時変化をプロットしている。100Hz、1秒刺激(上向き矢印)以降、持続的にシナプス応答が増大している。下段は上段プロット図中の数字で示した時間において記録されたEPSPの波形を示している。]]
== 特性 ==
== 特性 ==
 主に海馬CA1シナプスを対象とした研究から、LTPは以下の3つの特性を示すことが明らかになっている<ref name=Levy1979><pubmed>487154</pubmed></ref><ref name=McNaughton1978><pubmed>719524</pubmed></ref>。
 主に海馬CA1シナプスを対象とした研究から、LTPは以下の3つの特性を示すことが明らかになっている<ref name=Levy1979><pubmed>487154</pubmed></ref><ref name=McNaughton1978><pubmed>719524</pubmed></ref>。
25行目: 26行目:


 こうした特性を示すことから、LTPは[[wj:ドナルド・ヘッブ|ヘブ]]によって提唱された学習理論<ref name=Hebb1949>'''Hebb, D. O. (1949).'''<br>The Organization of Behavior:  A Neuropsychological Theory. New York, Wiley & Sons</pubmed></ref>、すなわち、「記憶や学習が成立する際のシナプス強度の変化は、[[シナプス前細胞]]と[[シナプス後細胞]]とが同時に活性化された場合に引き起こされる」に相当する現象であるとみなされ、このようなタイプの可塑性を示すシナプスは[[ヘブ型シナプス]](Hebbian synapse)、また誘導されるLTPは[[ヘブ型LTP]](Hebbian LTP)と呼ばれている。
 こうした特性を示すことから、LTPは[[wj:ドナルド・ヘッブ|ヘブ]]によって提唱された学習理論<ref name=Hebb1949>'''Hebb, D. O. (1949).'''<br>The Organization of Behavior:  A Neuropsychological Theory. New York, Wiley & Sons</pubmed></ref>、すなわち、「記憶や学習が成立する際のシナプス強度の変化は、[[シナプス前細胞]]と[[シナプス後細胞]]とが同時に活性化された場合に引き起こされる」に相当する現象であるとみなされ、このようなタイプの可塑性を示すシナプスは[[ヘブ型シナプス]](Hebbian synapse)、また誘導されるLTPは[[ヘブ型LTP]](Hebbian LTP)と呼ばれている。
[[ファイル:Kobayashi LTP Fig1.png|サムネイル|'''図1. LTP誘導機構'''<br>
[[ファイル:Kobayashi LTP Fig2.png|サムネイル|'''図2. LTP誘導機構'''<br>
'''A.''' 定常状態における神経伝達:シナプス前終末から放出されたグルタミン酸(●)が、シナプス後細胞に発現しているAMPA型グルタミン酸受容体を活性化することにより、ナトリウムイオンの流入、カリウムイオンの流出が起きる。放出されたグルタミン酸は、NMDA型グルタミン酸受容体にも結合するが、細胞外のマグネシウムイオン(<span style="color:red">●</span>)により受容体チャネルがブロックされているため、イオンの移動は起きない。<br>
'''A.''' 定常状態における神経伝達:シナプス前終末から放出されたグルタミン酸(●)が、シナプス後細胞に発現しているAMPA型グルタミン酸受容体を活性化することにより、ナトリウムイオンの流入、カリウムイオンの流出が起きる。放出されたグルタミン酸は、NMDA型グルタミン酸受容体にも結合するが、細胞外のマグネシウムイオン(<span style="color:red">●</span>)により受容体チャネルがブロックされているため、イオンの移動は起きない。<br>
'''B.''' 刺激によりシナプス後細胞が強く脱分極すると、NMDA型グルタミン酸受容体のマグネシウムブロックが外れ、ナトリウム、カリウムイオンの移動とともに、細胞内へとカルシウムイオンの流入がおきる。]][[ファイル:Kobayashi LTP Fig2.jpg|サムネイル|'''図2. シナプス後性LTP'''<br>  
'''B.''' 刺激によりシナプス後細胞が強く脱分極すると、NMDA型グルタミン酸受容体のマグネシウムブロックが外れ、ナトリウム、カリウムイオンの移動とともに、細胞内へとカルシウムイオンの流入がおきる。]][[ファイル:Kobayashi LTP Fig3.png|サムネイル|'''図3. シナプス後性LTP発現機構の模式図'''<br>  
'''A.''' シャッファー側枝-CA1シナプスにおけるシナプス後性LTPの例。上段はテタヌス刺激前後の興奮性シナプス後電位(excitatory postsynaptic potential: EPSP)の傾き(EPSP slope) の経時変化をプロットしている。100Hz、1秒刺激(上向き矢印)以降、持続的にシナプス応答が増大している。下段は上段プロット図中の数字で示した時間において記録されたEPSPの波形を示している。<br>
'''A.''' シナプス後細胞に発現するAMPA型グルタミン酸受容体が増加する際には、エクソサイトーシスにより新たに細胞表面に受容体が発現する可能性(左)や、シナプス外に発現していた受容体が、側方拡散によってPSDへと移行する可能性(右)が考えられている。<br>  
'''B, C.''' LTP発現機構の模式図<br>
'''B.''' AMPA型グルタミン酸受容体がリン酸化を受け、単一チャネルのコンダクタンスが増大(右)することで、シナプス応答が増大するとする説も唱えられている。]]
'''B.''' シナプス後細胞に発現するAMPA型グルタミン酸受容体が増加する際には、エクソサイトーシスにより新たに細胞表面に受容体が発現する可能性(左)や、シナプス外に発現していた受容体が、側方拡散によってPSDへと移行する可能性(右)が考えられている。<br>  
'''C.''' AMPA型グルタミン酸受容体がリン酸化を受け、単一チャネルのコンダクタンスが増大(右)することで、シナプス応答が増大するとする説も唱えられている。]]
== 機序 ==
== 機序 ==
 LTPの機序に関しては海馬[[シャッファー側枝]]-[[CA1]]シナプスに代表されるシナプス後性のヘブ型シナプスに関して研究が進んでいる。嗅内野貫通線維-海馬歯状回や大脳皮質興奮性神経細胞でも似た機序によりLTPが起こると考えられる。
 LTPの機序に関しては海馬[[シャッファー側枝]]-[[CA1]]シナプスに代表されるシナプス後性のヘブ型シナプスに関して研究が進んでいる。嗅内野貫通線維-海馬歯状回や大脳皮質興奮性神経細胞でも似た機序によりLTPが起こると考えられる。
39行目: 38行目:
 シナプス前終末から放出された神経伝達物質に対するシナプス後細胞の感受性の増大が長期間持続する現象を指す。
 シナプス前終末から放出された神経伝達物質に対するシナプス後細胞の感受性の増大が長期間持続する現象を指す。
====誘導====
====誘導====
 最も代表的なシナプス後性のLTPは、海馬CA1領域の興奮性シナプス伝達のLTPである。実験的には、100Hz程度の高頻度のシナプス前線維の電気刺激([[テタヌス刺激]], tetanic stimulation)等により誘導される('''図2A''')。その結果シナプスに最初に引き起こされる変化の過程を誘導 (induction)と呼ぶ。以下の一連の研究から、ヘブ型シナプスでのLTPの誘導には、①シナプス前部の活性化と、それに伴う②シナプス後細胞の[[脱分極]]、の2つが最低限必要であることがわかっている。
 最も代表的なシナプス後性のLTPは、海馬CA1領域の興奮性シナプス伝達のLTPである。実験的には、100Hz程度の高頻度のシナプス前線維の電気刺激([[テタヌス刺激]], tetanic stimulation)等により誘導される('''図1''')。その結果シナプスに最初に引き起こされる変化の過程を誘導 (induction)と呼ぶ。以下の一連の研究から、ヘブ型シナプスでのLTPの誘導には、①シナプス前部の活性化と、それに伴う②シナプス後細胞の[[脱分極]]、の2つが最低限必要であることがわかっている。
* シナプス後細胞に脱分極電流を注入すると、強いテタヌス刺激を加えたのと同様のLTP誘導効果を得ることができる<ref name=Gustafsson1987><pubmed>2881989</pubmed></ref><ref name=Kelso1986><pubmed>3460096</pubmed></ref>。
* シナプス後細胞に脱分極電流を注入すると、強いテタヌス刺激を加えたのと同様のLTP誘導効果を得ることができる<ref name=Gustafsson1987><pubmed>2881989</pubmed></ref><ref name=Kelso1986><pubmed>3460096</pubmed></ref>。
* シナプス後細胞を脱分極させただけでは不十分で、同時にシナプス入力がなければLTPは誘導されない<ref name=Malenka1989><pubmed>2479146</pubmed></ref>。
* シナプス後細胞を脱分極させただけでは不十分で、同時にシナプス入力がなければLTPは誘導されない<ref name=Malenka1989><pubmed>2479146</pubmed></ref>。
* テタヌス刺激時にシナプス後細胞を[[過分極]]させるか、あるいは[[電位固定]]により脱分極を起こさないようにするとLTPが阻害される<ref name=Kelso1986><pubmed>3460096</pubmed></ref><ref name=Malinow1986><pubmed>3008000</pubmed></ref>。
* テタヌス刺激時にシナプス後細胞を[[過分極]]させるか、あるいは[[電位固定]]により脱分極を起こさないようにするとLTPが阻害される<ref name=Kelso1986><pubmed>3460096</pubmed></ref><ref name=Malinow1986><pubmed>3008000</pubmed></ref>。
=====グルタミン酸受容体活性化=====
=====グルタミン酸受容体活性化=====
 このシナプスでの神経伝達物質は、[[興奮性アミノ酸]]である[[グルタミン酸]]で、LTPの誘導と発現には2種類の[[グルタミン酸受容体]]が関与している。通常のシナプス伝達は[[AMPA型グルタミン酸受容体]]により媒介されており、[[NMDA型グルタミン酸受容体]]は細胞外の[[マグネシウム]]イオンにより、阻害されている('''図1A''')。刺激によりシナプス後細胞が強く脱分極すると、NMDA型グルタミン酸受容体のマグネシウム阻害が外れ、ナトリウムイオンやカリウムイオンの移動とともに、[[カルシウム]]イオンの流入が引き起こされLTPが誘導される('''図1B''')。
 このシナプスでの神経伝達物質は、[[興奮性アミノ酸]]である[[グルタミン酸]]で、LTPの誘導と発現には2種類の[[グルタミン酸受容体]]が関与している。通常のシナプス伝達は[[AMPA型グルタミン酸受容体]]により媒介されており、[[NMDA型グルタミン酸受容体]]は細胞外の[[マグネシウム]]イオンにより、阻害されている('''図2A''')。刺激によりシナプス後細胞が強く脱分極すると、NMDA型グルタミン酸受容体のマグネシウム阻害が外れ、ナトリウムイオンやカリウムイオンの移動とともに、[[カルシウム]]イオンの流入が引き起こされLTPが誘導される('''図2B''')。


 NMDA型グルタミン酸受容体の選択的[[アンタゴニスト]]である[[D-APV|<small>D</small>-APV]]存在下ではLTPが誘導されないこと<ref name=Collingridge1983><pubmed>6306230</pubmed></ref>や、細胞内のカルシウムイオンを[[キレート]]することによってLTPが阻害される<ref name=Lynch1983><pubmed>6415483</pubmed></ref>といった一連の研究から、膜の脱分極によってNMDA型グルタミン酸受容体を介して細胞内へとカルシウムイオンの流入がおきる<ref name=Ascher1988><pubmed>2457089</pubmed></ref><ref name=MacDermott1986><pubmed>3012362</pubmed></ref>ことがLTP誘導に必須であることがあきらかになっている('''図1B''')。
 NMDA型グルタミン酸受容体の選択的[[アンタゴニスト]]である[[D-APV|<small>D</small>-APV]]存在下ではLTPが誘導されないこと<ref name=Collingridge1983><pubmed>6306230</pubmed></ref>や、細胞内のカルシウムイオンを[[キレート]]することによってLTPが阻害される<ref name=Lynch1983><pubmed>6415483</pubmed></ref>といった一連の研究から、膜の脱分極によってNMDA型グルタミン酸受容体を介して細胞内へとカルシウムイオンの流入がおきる<ref name=Ascher1988><pubmed>2457089</pubmed></ref><ref name=MacDermott1986><pubmed>3012362</pubmed></ref>ことがLTP誘導に必須であることがあきらかになっている('''図2B''')。
=====カルシウムイオンの機能=====
=====カルシウムイオンの機能=====
 細胞内へと流入したカルシウムイオンは、さまざまなシグナル伝達系を活性化するが、中でもLTPと密接に関連していると考えられているのが、[[カルシウム-カルモデュリン依存性キナーゼII]]([[calcium-calmodulin-dependent kinase II]]: [[CaMKII]])である<ref name=Lisman2012><pubmed>22334212</pubmed></ref>。CaMKIIの基質にはAMPA型グルタミン酸受容体も含まれており、CaMKIIによるAMPA型グルタミン酸受容体の[[リン酸化]]がシナプス後部への移行を制御しているといった報告<ref name=Henley2016><pubmed>27080385</pubmed></ref><ref name=Huganir2013><pubmed>24183021</pubmed></ref>や、AMPA型グルタミン酸受容体のリン酸化により受容体の単一[[チャネルコンダクタンス]](single-channel conductance)が上昇する('''図2C)'''という報告もあるが<ref name=Benke1998><pubmed>9655394</pubmed></ref><ref name=Derkach1999><pubmed>10077673</pubmed></ref>、CaMKIIには他にも数百に及ぶ基質が知られており<ref name=Hornbeck2015><pubmed>25514926 </pubmed>[https://www.phosphosite.org/ [URL<nowiki>]</nowiki>]</ref>、いずれの基質がLTPに重要であるのかは現在も検討が続いている状況である<ref name=Hayashi2022><pubmed>34375719</pubmed></ref>。
 細胞内へと流入したカルシウムイオンは、さまざまなシグナル伝達系を活性化するが、中でもLTPと密接に関連していると考えられているのが、[[カルシウム-カルモデュリン依存性キナーゼII]]([[calcium-calmodulin-dependent kinase II]]: [[CaMKII]])である<ref name=Lisman2012><pubmed>22334212</pubmed></ref>。CaMKIIの基質にはAMPA型グルタミン酸受容体も含まれており、CaMKIIによるAMPA型グルタミン酸受容体の[[リン酸化]]がシナプス後部への移行を制御しているといった報告<ref name=Henley2016><pubmed>27080385</pubmed></ref><ref name=Huganir2013><pubmed>24183021</pubmed></ref>('''図3A''')や、AMPA型グルタミン酸受容体のリン酸化により受容体の単一[[チャネルコンダクタンス]](single-channel conductance)が上昇する('''図3B''')という報告もあるが<ref name=Benke1998><pubmed>9655394</pubmed></ref><ref name=Derkach1999><pubmed>10077673</pubmed></ref>、CaMKIIには他にも数百に及ぶ基質が知られており<ref name=Hornbeck2015><pubmed>25514926 </pubmed>[https://www.phosphosite.org/ [URL<nowiki>]</nowiki>]</ref>、いずれの基質がLTPに重要であるのかは現在も検討が続いている状況である<ref name=Hayashi2022><pubmed>34375719</pubmed></ref>。


 またCaMKIIは他のリン酸化酵素と異なり、シナプスでの発現量が非常に多く、その量は[[アクチン]]などの[[細胞骨格]]に匹敵するほどであることに加え<ref name=Erondu1985><pubmed>4078628</pubmed></ref>、12-14量体構造をとるといった特徴を持つことから<ref name=Hoelz2003><pubmed>12769848</pubmed></ref>、単にリン酸化酵素として機能するにとどまらず、構造タンパク質としての側面がLTP制御の上で重要な役割を果たしている可能性も近年指摘されている<ref name=Hayashi2022><pubmed>34375719</pubmed></ref><ref name=Nicoll2023><pubmed>37290118</pubmed></ref>。
 またCaMKIIは他のリン酸化酵素と異なり、シナプスでの発現量が非常に多く、その量は[[アクチン]]などの[[細胞骨格]]に匹敵するほどであることに加え<ref name=Erondu1985><pubmed>4078628</pubmed></ref>、12-14量体構造をとるといった特徴を持つことから<ref name=Hoelz2003><pubmed>12769848</pubmed></ref>、単にリン酸化酵素として機能するにとどまらず、構造タンパク質としての側面がLTP制御の上で重要な役割を果たしている可能性も近年指摘されている<ref name=Hayashi2022><pubmed>34375719</pubmed></ref><ref name=Nicoll2023><pubmed>37290118</pubmed></ref>。
67行目: 66行目:
 これはAMPA型グルタミン酸受容体をGFPで蛍光ラベルして可視化する手法<ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Shi1999><pubmed>10364548</pubmed></ref>や、[[GluA1]]-ホモメリック受容体(通常発現しているGluA2含有AMPA型グルタミン酸受容体とは電流―電圧関係が異なり整流性を示すために、内在性のAMPA型グルタミン酸受容体と電気生理学的に区別することができる)を海馬ニューロンに過剰発現させ、この外来性AMPA型グルタミン酸受容体がLTP誘導後に実際にシナプスへと移行していることを確かめることによって明らかにされた<ref name=Hayashi2000><pubmed>10731148</pubmed></ref>。
 これはAMPA型グルタミン酸受容体をGFPで蛍光ラベルして可視化する手法<ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Shi1999><pubmed>10364548</pubmed></ref>や、[[GluA1]]-ホモメリック受容体(通常発現しているGluA2含有AMPA型グルタミン酸受容体とは電流―電圧関係が異なり整流性を示すために、内在性のAMPA型グルタミン酸受容体と電気生理学的に区別することができる)を海馬ニューロンに過剰発現させ、この外来性AMPA型グルタミン酸受容体がLTP誘導後に実際にシナプスへと移行していることを確かめることによって明らかにされた<ref name=Hayashi2000><pubmed>10731148</pubmed></ref>。


 シナプスへと集積するAMPA型グルタミン酸受容体は、細胞内のプールから[[エクソサイトーシス]]によって活動依存的にシナプスへと発現する('''図2B''', 左)という説のほか<ref name=Kennedy2011><pubmed>21382547</pubmed></ref><ref name=Makino2009><pubmed>19914186</pubmed></ref><ref name=Patterson2010><pubmed>20733080</pubmed></ref>、シナプス外(extrasynaptic site)に発現しているAMPA型グルタミン酸受容体が側方拡散(lateral diffusion)によってシナプスへと移行するという説('''図2B''', 右)などが唱えられている<ref name=Choquet2003><pubmed>12671642</pubmed></ref><ref name=Opazo2012><pubmed>22051694</pubmed></ref>。
 シナプスへと集積するAMPA型グルタミン酸受容体は、細胞内のプールから[[エクソサイトーシス]]によって活動依存的にシナプスへと発現する('''図3A''', 左)という説のほか<ref name=Kennedy2011><pubmed>21382547</pubmed></ref><ref name=Makino2009><pubmed>19914186</pubmed></ref><ref name=Patterson2010><pubmed>20733080</pubmed></ref>、シナプス外(extrasynaptic site)に発現しているAMPA型グルタミン酸受容体が側方拡散(lateral diffusion)によってシナプスへと移行するという説('''図3A''', 右)などが唱えられている<ref name=Choquet2003><pubmed>12671642</pubmed></ref><ref name=Opazo2012><pubmed>22051694</pubmed></ref>。
[[ファイル:Kobayashi LTP Fig3.jpg|サムネイル|'''図3. シナプス前性LTPの例(海馬苔状線維-CA3シナプスにおけるLTP)'''<br>
[[ファイル:Kobayashi LTP Fig4.jpg|サムネイル|'''図4. シナプス前性LTPの例(海馬苔状線維-CA3シナプスにおけるLTP)'''<br>
マウス海馬スライス標本の歯状回の細胞層にタングステン双極電極を刺入して顆粒細胞を電気刺激することにより苔状線維を発火させ、細胞外電位記録法によりCA3領域の透明層に刺入したガラス管記録電極で興奮性シナプス後電位(excitatory postsynaptic potential: EPSP)を記録している。0.1Hzでベースラインの反応を記録したあと、図中の上向き矢印の時点で100Hzの高頻度刺激を1秒間与え、その後、0.1Hzに戻してさらに1時間以上EPSPを記録しているが、シナプス応答が約2倍に増大し、持続している。高頻度刺激を与える際にNMDA受容体のアンタゴニストである<small>D</small>-APVを灌流投与した(グラフ中の黒いバー)条件下でLTPが誘導されていることから、苔状線維シナプスでのLTP誘導にはシナプス後細胞の活動が不要であることを示している。]]
マウス海馬スライス標本の歯状回の細胞層にタングステン双極電極を刺入して顆粒細胞を電気刺激することにより苔状線維を発火させ、細胞外電位記録法によりCA3領域の透明層に刺入したガラス管記録電極で興奮性シナプス後電位(excitatory postsynaptic potential: EPSP)を記録している。0.1Hzでベースラインの反応を記録したあと、図中の上向き矢印の時点で100Hzの高頻度刺激を1秒間与え、その後、0.1Hzに戻してさらに1時間以上EPSPを記録しているが、シナプス応答が約2倍に増大し、持続している。高頻度刺激を与える際にNMDA受容体のアンタゴニストである<small>D</small>-APVを灌流投与した(グラフ中の黒いバー)条件下でLTPが誘導されていることから、苔状線維シナプスでのLTP誘導にはシナプス後細胞の活動が不要であることを示している。]]
==== 維持 ====
==== 維持 ====
78行目: 77行目:
 シナプス前終末からの神経伝達物質の放出が長期間にわたり増加する現象を指す。原理的には、ひとつの[[シナプス小胞]]内に含まれる神経伝達物質の量が増えることでもLTPが発現し得るが、ほとんどの場合は、シナプス小胞からの神経伝達物質の放出確率が長期的に増加することにより発現する。
 シナプス前終末からの神経伝達物質の放出が長期間にわたり増加する現象を指す。原理的には、ひとつの[[シナプス小胞]]内に含まれる神経伝達物質の量が増えることでもLTPが発現し得るが、ほとんどの場合は、シナプス小胞からの神経伝達物質の放出確率が長期的に増加することにより発現する。


 シナプス前性LTPの代表は、海馬CA3領域苔状線維 (mossy fiber) シナプスでのLTPである<ref name=Nicoll2005><pubmed>16261180</pubmed></ref><ref name=Zalutsky1990><pubmed>2114039</pubmed></ref>。CA3錐体細胞への入力線維である苔状線維に100Hz程度の高頻度刺激を与えると、その直後にはシナプス応答が10倍程度に増大し('''図3A'''、矢印)、それ以降は急速に漸減するが、約30分程度で、もとのレベルの2倍~数倍程度増強された状態で安定する。この際、シナプス後細胞の活動は必要なく、シナプス前終末の活動だけで誘導されることから、いわゆるヘブ型(Hebbian LTP)と区別し、[[非ヘブ型LTP]](non-Hebbian LTP)と呼ばれる。長期的な放出確率の増大にシナプス前終末内の[[サイクリックAMP]] ([[cAMP]])が関与していると考えられている<ref name=Weisskopf1994><pubmed>7916482</pubmed></ref>。それに引き続く細胞内生化学過程については[[プロテインキナーゼA]]が関与するとの報告がある<ref name=Shahoha2022><pubmed>35444523</pubmed></ref>。
 シナプス前性LTPの代表は、海馬CA3領域苔状線維 (mossy fiber) シナプスでのLTPである<ref name=Nicoll2005><pubmed>16261180</pubmed></ref><ref name=Zalutsky1990><pubmed>2114039</pubmed></ref>。CA3錐体細胞への入力線維である苔状線維に100Hz程度の高頻度刺激を与えると、その直後にはシナプス応答が10倍程度に増大し('''図4A'''、矢印)、それ以降は急速に漸減するが、約30分程度で、もとのレベルの2倍~数倍程度増強された状態で安定する。この際、シナプス後細胞の活動は必要なく、シナプス前終末の活動だけで誘導されることから、いわゆるヘブ型(Hebbian LTP)と区別し、[[非ヘブ型LTP]](non-Hebbian LTP)と呼ばれる。長期的な放出確率の増大にシナプス前終末内の[[サイクリックAMP]] ([[cAMP]])が関与していると考えられている<ref name=Weisskopf1994><pubmed>7916482</pubmed></ref>。それに引き続く細胞内生化学過程については[[プロテインキナーゼA]]が関与するとの報告がある<ref name=Shahoha2022><pubmed>35444523</pubmed></ref>。


== 参考文献 ==
== 参考文献 ==