「放出可能プール」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
8行目: 8行目:
 ただし実験標本の違いや、使用する刺激の方法や強度の違い(神経軸索の直接刺激、高カリウム溶液投与などによる神経終末の脱分極、Ca[[アンケイジング]]等)、伝達物質放出の記録法(電気生理学的、光学的手法)の違い、そして解析法の違いによって放出可能プールの定義は異なっており、統一的な定義はない。また、放出可能プールは生理学的な概念であるため、形態的な実体がどのようなものか([[形質膜]]に張り付いた小胞すべてがそうなのか)もよくわかっていない。
 ただし実験標本の違いや、使用する刺激の方法や強度の違い(神経軸索の直接刺激、高カリウム溶液投与などによる神経終末の脱分極、Ca[[アンケイジング]]等)、伝達物質放出の記録法(電気生理学的、光学的手法)の違い、そして解析法の違いによって放出可能プールの定義は異なっており、統一的な定義はない。また、放出可能プールは生理学的な概念であるため、形態的な実体がどのようなものか([[形質膜]]に張り付いた小胞すべてがそうなのか)もよくわかっていない。


 シナプス小胞は、活動電位が発生しても放出されない貯蔵プールにある状態から、軸索終末の[[アクティブゾーン]]の細胞膜近傍にドッキングし、その後Ca<Sup>2+</Sup>依存的な開口放出に至るための準備過程(プライミング)を経る。このプライミングを終えた状態が、放出可能プールであると考えられているが、生理学的な概念との対応は完全には明らかではない。放出可能プールは多くのタンパク質によって制御されており、連発刺激時にシナプス伝達効率が変化する短期シナプス可塑性の重要な要素となると考えられている。
なお、放出可能プールとは別に、即時放出可能プール(readily releasable pool: RRP)という用語も用いられるが、研究者により放出可能プールと同義で用いる場合と、別の意味で用いる場合もあり、統一した見解が無い。
 
 シナプス小胞は、活動電位が発生しても放出されない貯蔵プールにある状態から、軸索終末の[[アクティブゾーン]]の細胞膜近傍にドッキングし、その後Ca<Sup>2+</Sup>依存的な開口放出に至るための準備過程(プライミング)を経る。このプライミングを終えた状態が、放出可能プールであると考えられているが、生理学的な概念との対応は完全には明らかではない。放出可能プールは多くのタンパク質によって制御されており、連発刺激時にシナプス伝達効率が変化する短期シナプス可塑性の重要な要素となると考えられている。開口放出されたシナプス小胞は、エンドサイトーシスにより回収されて再利用される再循環プール(recycling pool)の経路をたどる。


==放出可能プールに至るまで==
==放出可能プールに至るまで==
17行目: 19行目:


 軸索終末の多くのシナプス小胞は、[[貯蔵プール]]と呼ばれる状態で、活動電位が発生してもただちに開口放出されない。
 軸索終末の多くのシナプス小胞は、[[貯蔵プール]]と呼ばれる状態で、活動電位が発生してもただちに開口放出されない。


===ドッキング===
===ドッキング===


 シナプス小胞膜上の[[VAMP2]]と[[シナプス前膜]]に存在する[[シンタキシン1]]および[[SNAP-25]]が結合して[[SNARE複合体]]を形成することにより、シナプス小胞がシナプス前膜の[[アクティブゾーン]]近傍に結合する。これをドッキングという。VAMPとシンタキシン1およびSNAP-25は、4本の[[wikipedia:ja:αへリックス|αへリックス]]からなる[[wikipedia:ja:コイルドコイル|コイルドコイル]]構造を形成して強固に結合し、ジッパーのような構造で小胞膜をシナプス前膜に近づけると考えられている。ドッキングの分子メカニズムの詳細は不明であるが、ドッキングに関与する分子を阻害すると、1放出部位レベルではシナプス小胞がドッキングできないのでall-or-noneにシナプス伝達が阻害される。
 貯蔵プールにあるシナプス小胞は、アクティブゾーンへ輸送されるターゲッティングを経て、細胞膜貫通タンパク質とシナプス小胞膜のタンパク質が相互作用することによりテザリングされる。そして、シナプス小胞膜上の[[VAMP2]]と[[シナプス前膜]]に存在する[[シンタキシン1]]および[[SNAP-25]]が結合して[[SNARE複合体]]を形成することにより、シナプス小胞がシナプス前膜の[[アクティブゾーン]]近傍に結合する。これをドッキングという。VAMPとシンタキシン1およびSNAP-25は、4本の[[wikipedia:ja:αへリックス|αへリックス]]からなる[[wikipedia:ja:コイルドコイル|コイルドコイル]]構造を形成して強固に結合し、ジッパーのような構造で小胞膜をシナプス前膜に近づけると考えられている。ドッキングの分子メカニズムの詳細は不明であるが、ドッキングに関与する分子を阻害すると、1放出部位レベルではシナプス小胞がドッキングできないのでall-or-noneにシナプス伝達が阻害される。


===プライミング===
===プライミング===


 ドッキングされたシナプス小胞は、その後さらにCa<Sup>2+</Sup>上昇に応じて即時に膜融合に至るためのプライミング過程を経て、放出可能プールとなると考えられている。このプライミング過程は、[[Munc-13]]、[[Rim]]などのタンパク質が関わっていると考えられているが、プライミングの分子実体はよくわかっていない。プライミング関連タンパク質の機能修飾はシナプス伝達の不全や、反復刺激に対する短期シナプス可塑性の変化につながるようである。
 ドッキングされたシナプス小胞は、その後さらにCa<Sup>2+</Sup>上昇に応じて即時に膜融合に至るためのプライミング過程を経て、放出可能プールとなると考えられている。このプライミング過程は、[[Munc-13]]、[[Rim]]などのタンパク質が関わっていると考えられているが、プライミングの分子実体はよくわかっていない。コンプレキシン(complexin)タンパク質がプライミングに関わることも報告されているが、どのようにプライミングに寄与するのかははっきりしていない。プライミング関連タンパク質の機能修飾はシナプス伝達の不全や、反復刺激に対する短期シナプス可塑性の変化につながるようである。


===膜融合===
===膜融合===


 活動電位の発生によりアクティブゾーンのCa<Sup>2+</Sup>チャネルが開いてCa<Sup>2+</Sup>が流入する。Ca<Sup>2+</Sup>チャネルはアクティブゾーンでクラスターを形成しており、その近傍では局所的に数十&mu;M程度のCa<Sup>2+</Sup>濃度に達する。これにより、[[シナプスタグミン]]等のCa<Sup>2+</Sup>センサータンパク質が構造変化を起こすことにより、即時に(Ca<Sup>2+</Sup>流入から0.2 ms程度)エクソサイトーシスが起こり、伝達物質はシナプス間隙へ放出されると考えられている。
 活動電位の発生によりアクティブゾーンのCa<Sup>2+</Sup>チャネルが開いてCa<Sup>2+</Sup>が流入する。Ca<Sup>2+</Sup>チャネルはアクティブゾーンでクラスターを形成しており、その近傍では局所的に数十&mu;M程度のCa<Sup>2+</Sup>濃度に達する。これにより、[[シナプトタグミン]]等のCa<Sup>2+</Sup>センサータンパク質が構造変化を起こすことにより、即時に(Ca<Sup>2+</Sup>流入から0.2 ms程度)エクソサイトーシスが起こり、伝達物質はシナプス間隙へ放出されると考えられている。


===小胞のリサイクリング===
===小胞のリサイクリング===