「ナノボディ」の版間の差分

109行目: 109行目:
 近年、生命科学系の研究では、論文発表された実験結果の一部が容易に再現できないとされる問題がしばしば指摘されている。抗体の利用は、この再現性問題の重要な要因の1つであるとされる<ref><pubmed>25993940</pubmed></ref><ref><pubmed>29688318</pubmed></ref>。
 近年、生命科学系の研究では、論文発表された実験結果の一部が容易に再現できないとされる問題がしばしば指摘されている。抗体の利用は、この再現性問題の重要な要因の1つであるとされる<ref><pubmed>25993940</pubmed></ref><ref><pubmed>29688318</pubmed></ref>。


 例えば、ウサギなどからのポリクローナル抗体は、多数の異なる抗体分子を含んでいるため、免疫した動物などバッチごとの差が大きい。また、[[wj:モノクローン抗体]]は、ハイブリドーマ細胞を増殖させることで、永遠に同じものを得ることができるはずであるが、市販抗体は予期せず販売中止になったり、ハイブリドーマ細胞は極低温で凍結維持しなくてはならず、災害や個々の研究者の都合により失われてしまうこともある。
 例えば、ウサギなどからのポリクローナル抗体は、多数の異なる抗体分子を含んでいるため、免疫した動物などバッチごとの差が大きい。また、[[wj:モノクローナル抗体|モノクローナル抗体]]は、ハイブリドーマ細胞を増殖させることで、永遠に同じものを得ることができるはずであるが、市販抗体は予期せず販売中止になったり、ハイブリドーマ細胞は極低温で凍結維持しなくてはならず、災害や個々の研究者の都合により失われてしまうこともある。


 ナノボディは、アミノ酸配列レベルで定義されるので質は同じであり、DNAという形で安価で長期保存が可能である。万一DNAが失われても、登録されたアミノ酸配列をもとにして容易に再生できるので、抗体の利用研究の再現性問題の解決法として注目されている。
 ナノボディは、アミノ酸配列レベルで定義されるので質は同じであり、DNAという形で安価で長期保存が可能である。万一DNAが失われても、登録されたアミノ酸配列をもとにして容易に再生できるので、抗体の利用研究の再現性問題の解決法として注目されている。