「セリンラセミ化酵素」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
45行目: 45行目:


== 活性とその制御 ==
== 活性とその制御 ==
 <SMALL>L</SMALL>-[[wikipedia:JA:セリン|セリン]]からの[[wikipedia:JA:ラセミ化反応|ラセミ化反応]]および<SMALL>D</SMALL>,<SMALL>L</SMALL>-セリンの[[wikipedia:JA:脱水反応|デヒドラターゼ反応]](α,β-脱離)を触媒する<ref><pubmed>9892700</pubmed></ref> <ref><pubmed>15536068</pubmed></ref>。ラセミ化反応では[[D-セリン|<SMALL>D</SMALL>-セリン]]、デヒドラターゼ反応により[[wikipedia:JA:|ピルビン酸]]と[[wikipedia:JA:アンモニア|アンモニア]]が産生される。In vitroでは、SRのデヒドラターゼ活性がセリンラセミ化活性の3.7倍であるが<ref name=ref2><pubmed>15536068</pubmed></ref>、In vivoでもデヒドラターゼ活性がセリンラセミ化活性より高いかどうかは不明である。
 <SMALL>L</SMALL>-[[wikipedia:JA:セリン|セリン]]からの[[wikipedia:JA:ラセミ化反応|ラセミ化反応]]および<SMALL>D</SMALL>,<SMALL>L</SMALL>-セリンの[[wikipedia:JA:脱水反応|デヒドラターゼ反応]](α,β-脱離)を触媒する<ref name=ref1><pubmed>9892700</pubmed></ref><ref name=ref2><pubmed>15536068</pubmed></ref>。ラセミ化反応では[[D-セリン|<SMALL>D</SMALL>-セリン]]、デヒドラターゼ反応により[[wikipedia:JA:|ピルビン酸]]と[[wikipedia:JA:アンモニア|アンモニア]]が産生される。In vitroでは、SRのデヒドラターゼ活性がセリンラセミ化活性の3.7倍であるが<ref name=2 />,In vivoでもデヒドラターゼ活性がセリンラセミ化活性より高いかどうかは不明である。


 種々の生物に広く存在しており、これまでに[[wikipedia:JA:カイコ|カイコ]]、[[wikipedia:JA:ラット|ラット]]、[[wikipedia:JA:マウス|マウス]]、[[wikipedia:JA:ヒト|ヒト]]、[[wikipedia:JA:シロイヌナズナ|シロイヌナズナ]]などから精製、クローニングされている。動物型SRは、[[wikipedia:JA:補因子|補因子]]として[[wikipedia:JA:ピリドキサール|ピリドキサール5-リン酸]](PLP)を必要とし、Mg<sup>2+</sup>、Ca<sup>2+</sup>などの2価カチオンや[[wikipedia:JA:ATP|ATP]]により活性が上昇する<ref><pubmed>12393813</pubmed></ref><ref><pubmed>12515328</pubmed></ref>。 SRは[[wikipedia:JA:翻訳後修飾|翻訳後修飾]]を受けており、[[リン酸化]]により酵素が活性化され、[[wikipedia:JA:S-ニトロシル化|''S''-ニトロシル化]]により酵素活性が抑制される<ref><pubmed>20493854</pubmed></ref><ref><pubmed>17293453</pubmed></ref>。
 種々の生物に広く存在しており、これまでに[[wikipedia:JA:カイコ|カイコ]]、[[wikipedia:JA:ラット|ラット]]、[[wikipedia:JA:マウス|マウス]]、[[wikipedia:JA:ヒト|ヒト]]、[[wikipedia:JA:シロイヌナズナ|シロイヌナズナ]]などから精製、クローニングされている。動物型SRは、[[wikipedia:JA:補因子|補因子]]として[[wikipedia:JA:ピリドキサール|ピリドキサール5-リン酸]](PLP)を必要とし、Mg<sup>2+</sup>、Ca<sup>2+</sup>などの2価カチオンや[[wikipedia:JA:ATP|ATP]]により活性が上昇する<ref name=ref3><pubmed>12393813</pubmed></ref><ref name=ref4><pubmed>12515328</pubmed></ref>。 SRは[[wikipedia:JA:翻訳後修飾|翻訳後修飾]]を受けており、[[リン酸化]]により酵素が活性化され、[[wikipedia:JA:S-ニトロシル化|''S''-ニトロシル化]]により酵素活性が抑制される<ref name=ref5><pubmed>20493854</pubmed></ref><ref name=ref6><pubmed>17293453</pubmed></ref>。


 また、様々なタンパク質との結合により活性制御を受ける。[[Glutamate receptor interacting protein]] (GRIP)および[[protein interacting with C kinase 1]] (PICK1)との結合はSRを活性化し、[[Golgi-localized protein]] (Golga 3)との結合は、SRの[[ユビキチン化]]を低下させることで、その分解を抑制する<ref><pubmed>16314870</pubmed></ref><ref><pubmed>12515328</pubmed></ref><ref><pubmed>16714286</pubmed></ref>。[[wikipedia:JA:細胞膜|細胞膜]]に存在する[[ホスファチジルイノシトール#PI.284.2C5.29P2|ホスファチジルイノシトール 4,5-二リン酸]] (PlP2)はSRと結合し、SRの活性を抑制する<ref><pubmed>19380732</pubmed></ref><ref><pubmed>19193859</pubmed></ref>。
 また、様々なタンパク質との結合により活性制御を受ける。[[Glutamate receptor interacting protein]] (GRIP)および[[protein interacting with C kinase 1]] (PICK1)との結合はSRを活性化し、[[Golgi-localized protein]] (Golga 3)との結合は、SRの[[ユビキチン化]]を低下させることで、その分解を抑制する<ref name=ref7><pubmed>16314870</pubmed></ref><ref name=ref8><pubmed>12515328</pubmed></ref><ref name=ref9><pubmed>16714286</pubmed></ref>。[[wikipedia:JA:細胞膜|細胞膜]]に存在する[[ホスファチジルイノシトール#PI.284.2C5.29P2|ホスファチジルイノシトール 4,5-二リン酸]] (PlP2)はSRと結合し、SRの活性を抑制する<ref name=ref10><pubmed>19380732</pubmed></ref><ref name=ref11><pubmed>19193859</pubmed></ref>。


== 構造 ==
== 構造 ==
   
   
 動物型SRは、fold-type II型のPLP酵素であり、二つのドメインからなるダイマー構造をとる<ref><pubmed>20106978</pubmed></ref>。PLPを含む大ドメインは10本の[[wikipedia:JA:αへリックス|αへリックス]]に囲まれた7本の[[wikipedia:JA:βシート|βシート]]をコアとしてもつ。小ドメインは、コアとなる4本のβシートと3本のαへリックスからなる構造をとる。小ドメインの動きは、基質認識部位の形成と酵素の触媒作用において重要な役割を担っている。
 動物型SRは、fold-type II型のPLP酵素であり、二つのドメインからなるダイマー構造をとる<ref name=ref12><pubmed>20106978</pubmed></ref>。PLPを含む大ドメインは10本の[[wikipedia:JA:αへリックス|αへリックス]]に囲まれた7本の[[wikipedia:JA:βシート|βシート]]をコアとしてもつ。小ドメインは、コアとなる4本のβシートと3本のαへリックスからなる構造をとる。小ドメインの動きは、基質認識部位の形成と酵素の触媒作用において重要な役割を担っている。


== 脳内発現 ==
== 脳内発現 ==
   
   
 [http://mouse.brain-map.org/experiment/show/74357621 マウス脳におけるSRの発現]は発達過程に伴って変化し、脳部位によって異なる。[[大脳皮質]]および[[海馬]]では、生後7日から徐々に発現量が増加し、生後28日で成体レベルに達する。[[小脳]]では、生後14日から28日まで一過性に発現が増加した後、急速に減少する<ref name=miya><pubmed>18698599</pubmed></ref>。成体マウス脳では、大脳皮質、海馬、[[線条体]]、[[嗅球]]などの[[終脳]]においてSRが強く発現する。細胞レベルでは、SRは主に[[神経細胞]]に発現し、大脳皮質や海馬では[[グルタミン酸]]作動性[[錐体細胞]]、線条体では[[GABA作動性]][[中型有棘ニューロン]]、小脳ではGABA作動性[[プルキンエ細胞]]に発現する<ref name=miya />。一方、マウス海馬の[[初代培養]]系では、SRは神経細胞と[[アストロサイト]]の両方に発現する<ref name=miya />。
 [http://mouse.brain-map.org/experiment/show/74357621 マウス脳におけるSRの発現]は発達過程に伴って変化し、脳部位によって異なる。[[大脳皮質]]および[[海馬]]では、生後7日から徐々に発現量が増加し、生後28日で成体レベルに達する。[[小脳]]では、生後14日から28日まで一過性に発現が増加した後、急速に減少する<ref name=13><pubmed>18698599</pubmed></ref>。成体マウス脳では、大脳皮質、海馬、[[線条体]]、[[嗅球]]などの[[終脳]]においてSRが強く発現する。細胞レベルでは、SRは主に[[神経細胞]]に発現し、大脳皮質や海馬では[[グルタミン酸]]作動性[[錐体細胞]]、線条体では[[GABA作動性]][[中型有棘ニューロン]]、小脳ではGABA作動性[[プルキンエ細胞]]に発現する<ref name=13 />。一方、マウス海馬の[[初代培養]]系では、SRは神経細胞と[[アストロサイト]]の両方に発現する<ref name=13 />。


== 生理機能 ==
== 生理機能 ==
64行目: 64行目:
   アストロサイト由来の内在性のD-セリンがNMDARの主なコ・アゴニストとしてシナプス可塑性の制御に関わることが示唆されている。乳汁分泌期のラットの視床下部視索上核では、シナプスを取り巻くアストロサイトが減少するとともに、シナプスにおけるNMDAR電流が減少し、シナプス可塑性の長期増強(long-term potentiation, LTP)が誘導されない。しかし、乳汁分泌期のラット脳スライスにD-セリンを投与すると、NMDAR依存性の神経伝達が回復し、LTPが誘導できる<ref name=ref16><pubmed>16713567</pubmed></ref>。またHennebergerらは、アストロサイトがCa依存的なD-セリンの放出によりNMDAR活動を制御し、LTP誘導を調節していることを報告している<ref name=ref17><pubmed>20075918</pubmed></ref>。SRが主に神経細胞に発現していることから、アストロサイトがD-セリンの放出によりNMDARの機能を制御するには、神経細胞で合成されたD-セリンが細胞外に放出され、アストロサイトに取り込まれる必要があるが、そのメカニズムに関しては未だに不明である。
   アストロサイト由来の内在性のD-セリンがNMDARの主なコ・アゴニストとしてシナプス可塑性の制御に関わることが示唆されている。乳汁分泌期のラットの視床下部視索上核では、シナプスを取り巻くアストロサイトが減少するとともに、シナプスにおけるNMDAR電流が減少し、シナプス可塑性の長期増強(long-term potentiation, LTP)が誘導されない。しかし、乳汁分泌期のラット脳スライスにD-セリンを投与すると、NMDAR依存性の神経伝達が回復し、LTPが誘導できる<ref name=ref16><pubmed>16713567</pubmed></ref>。またHennebergerらは、アストロサイトがCa依存的なD-セリンの放出によりNMDAR活動を制御し、LTP誘導を調節していることを報告している<ref name=ref17><pubmed>20075918</pubmed></ref>。SRが主に神経細胞に発現していることから、アストロサイトがD-セリンの放出によりNMDARの機能を制御するには、神経細胞で合成されたD-セリンが細胞外に放出され、アストロサイトに取り込まれる必要があるが、そのメカニズムに関しては未だに不明である。
   NMDARのグリシンサイトにはD-セリンのほかグリシンも結合するが、D-セリンはグリシンと比較して、リコンビナントNMDARに対して約3倍高い親和性を示す<ref name=ref18><pubmed>7790891</pubmed></ref>。。脳スライスにD-セリンの分解酵素であるD-amino acid oxidase (DAO)を作用させD-セリンのみを分解し、グリシンの量が変化しない実験条件において、NMDA型GluR依存的な電流が減少し、LTPが誘導されない<ref name=ref19><pubmed>14638938</pubmed></ref>。ことから、D-セリンがNMDA型GluRの生理的な内在性コ・アゴニストとして機能し、シナプス可塑性制御に関わると考えられている。
   NMDARのグリシンサイトにはD-セリンのほかグリシンも結合するが、D-セリンはグリシンと比較して、リコンビナントNMDARに対して約3倍高い親和性を示す<ref name=ref18><pubmed>7790891</pubmed></ref>。。脳スライスにD-セリンの分解酵素であるD-amino acid oxidase (DAO)を作用させD-セリンのみを分解し、グリシンの量が変化しない実験条件において、NMDA型GluR依存的な電流が減少し、LTPが誘導されない<ref name=ref19><pubmed>14638938</pubmed></ref>。ことから、D-セリンがNMDA型GluRの生理的な内在性コ・アゴニストとして機能し、シナプス可塑性制御に関わると考えられている。
   現在、3系統のSRノックアウト(KO)マウスが確立されており、個体レベルにおけるSRの機能が明らかにされつつある。SRKOマウスでは、NMDAR 依存的な興奮性シナプス後電流(EPSCs)の減弱速度(decay) が遅くなり、海馬CA1のシナプスにおいてLTPが誘導されない<ref name=ref15><pubmed>19065142</pubmed></ref>。また、NMDAおよび[[アミロイドタンパク質|アミロイド]]β<sub>1-42</sub>(Aβ<sub>1-42</sub>)の脳内注入により誘導される[[神経細胞変性]]が野生型マウスに比べ有意に低下し、[[脳虚血]]により引き起こされる障害が緩和されることが報告されている <ref name=ref14><pubmed>19118183</pubmed></ref><ref><pubmed>20107067</pubmed></ref>。これらの結果から、SRにより産生される内在性のD-セリンがNMDAR機能制御に関与すると考えられる。SRKOマウスでは、空間記憶の異常などの認知機能および社会性行動の障害も認められている<ref name=ref15/><ref><pubmed>19065142</pubmed></ref><ref><pubmed>19483194</pubmed></ref>。
   現在、3系統のSRノックアウト(KO)マウスが確立されており、個体レベルにおけるSRの機能が明らかにされつつある。SRKOマウスでは、NMDAR 依存的な興奮性シナプス後電流(EPSCs)の減弱速度(decay) が遅くなり、海馬CA1のシナプスにおいてLTPが誘導されない<ref name=15 />。また、NMDAおよび[[アミロイドタンパク質|アミロイド]]β<sub>1-42</sub>(Aβ<sub>1-42</sub>)の脳内注入により誘導される[[神経細胞変性]]が野生型マウスに比べ有意に低下し、[[脳虚血]]により引き起こされる障害が緩和されることが報告されている <ref name=14 /><ref name=ref20><pubmed>20107067</pubmed></ref>。これらの結果から、SRにより産生される内在性のD-セリンがNMDAR機能制御に関与すると考えられる。SRKOマウスでは、空間記憶の異常などの認知機能および社会性行動の障害も認められている<ref name=ref15/><ref name=ref21><pubmed>19065142</pubmed></ref><ref><pubmed>19483194</pubmed></ref>。


== 関連項目 ==
== 関連項目 ==
17

回編集