16,217
回編集
細編集の要約なし |
|||
16行目: | 16行目: | ||
中根 達人、石原 康宏 | 中根 達人、石原 康宏 | ||
英:estrogen 独: | |||
{{box|text= エストロゲンは、エストロン、エストラジオール、エストリオールの3種類からなり、女性ホルモンと呼ばれる。女性生殖腺(卵巣)から分泌され、女性化や二次性徴に役割を果たすことが知られている。一方、最近、脳がエストロゲンの標的であること、さらには脳でエストロゲンが合成されることが明らかとなり、ニューロステロイドとしてのエストロゲンの作用解析が進んでいる。エストロゲンが、性行動や記憶、学習、神経保護に重要な役割を果たすことが明らかになりつつある。}} | {{box|text= エストロゲンは、エストロン、エストラジオール、エストリオールの3種類からなり、女性ホルモンと呼ばれる。女性生殖腺(卵巣)から分泌され、女性化や二次性徴に役割を果たすことが知られている。一方、最近、脳がエストロゲンの標的であること、さらには脳でエストロゲンが合成されることが明らかとなり、ニューロステロイドとしてのエストロゲンの作用解析が進んでいる。エストロゲンが、性行動や記憶、学習、神経保護に重要な役割を果たすことが明らかになりつつある。}} | ||
22行目: | 22行目: | ||
== エストロゲンとは == | == エストロゲンとは == | ||
ステロイドホルモンのひとつであり、女性において盛んに分泌され、生殖器官の発達や維持に関与していることから女性ホルモンとして機能している。エストロン(E1)、17β-エストラジオール(E2)ならびにエストリオール(E3)の3種が主なエストロゲンである。合成は主に卵巣で行われるが、副腎や脂肪組織、精巣でも行われており、女性だけでなく男性においてもエストロゲンは合成されている。合成されたエストロゲンは分泌され、細胞に取り込まれ、核内受容体であるエストロゲン受容体(estrogen receptor; ER)に結合する。エストロゲンが結合したエストロゲン受容体は二量体を形成し、DNAに結合して特定の遺伝子の転写を活性化する。また、エストロゲンは抗酸化作用を有し、神経細胞において酸化ストレスやアポトーシスに対する保護作用を示すことが報告されており<ref name=Ishihara2019><pubmed>31265900</pubmed></ref><ref name=Sawada1998><pubmed>9843162</pubmed></ref>、エストロゲンの生理作用は多岐にわたる。 | ステロイドホルモンのひとつであり、女性において盛んに分泌され、生殖器官の発達や維持に関与していることから女性ホルモンとして機能している。エストロン(E1)、17β-エストラジオール(E2)ならびにエストリオール(E3)の3種が主なエストロゲンである。合成は主に卵巣で行われるが、副腎や脂肪組織、精巣でも行われており、女性だけでなく男性においてもエストロゲンは合成されている。合成されたエストロゲンは分泌され、細胞に取り込まれ、核内受容体であるエストロゲン受容体(estrogen receptor; ER)に結合する。エストロゲンが結合したエストロゲン受容体は二量体を形成し、DNAに結合して特定の遺伝子の転写を活性化する。また、エストロゲンは抗酸化作用を有し、神経細胞において酸化ストレスやアポトーシスに対する保護作用を示すことが報告されており<ref name=Ishihara2019><pubmed>31265900</pubmed></ref><ref name=Sawada1998><pubmed>9843162</pubmed></ref>、エストロゲンの生理作用は多岐にわたる。 | ||
[[ファイル:Ishihara Estrogen Fig1.png|500px|サムネイル|'''図1. ステロイドホルモン合成経路'''<br>典型的なニューロステロイドを太線の四角で示す。破線矢印は、ヒトにおけるback-door pathwayである。estrone-S, estrone sulfate; P4502D, シトクロームP450 2D4(ラット)あるいは2D6(ヒト); RDH, レチノールデヒドロゲナーゼ。文献<ref name=Yamazaki2014>'''Yamazaki T., Ishihara Y. (2014).'''<br>Chapter 9 Neurosteroids: Regional Steroidogenesis. In: Hiroshi Yamazaki, editor. Fifty Years of Cytochrome P450 Research. Tokyo: Springer; 2014. p. 153 - 73.</ref>より引用。]] | |||
== 合成 == | == 合成 == | ||
卵巣におけるエストロゲンの合成は、脳によって調節されている。視床下部から分泌された性腺刺激ホルモン放出ホルモン(gonadotropin-releasing hormone; GnRH)が下垂体前葉に作用し、性腺刺激ホルモン(gonadotropins)の分泌が促進される。そして、性腺刺激ホルモンである卵胞刺激ホルモン(follicle-stimulating hormone; FSH)と黄体形成ホルモン(luteinizing hormone; LH)が卵巣におけるエストロゲン合成を促進する。 | 卵巣におけるエストロゲンの合成は、脳によって調節されている。視床下部から分泌された性腺刺激ホルモン放出ホルモン(gonadotropin-releasing hormone; GnRH)が下垂体前葉に作用し、性腺刺激ホルモン(gonadotropins)の分泌が促進される。そして、性腺刺激ホルモンである卵胞刺激ホルモン(follicle-stimulating hormone; FSH)と黄体形成ホルモン(luteinizing hormone; LH)が卵巣におけるエストロゲン合成を促進する。 | ||
34行目: | 34行目: | ||
5α-還元酵素は、プロゲステロン、テストステロン、および 11-デオキシコルチコステロンをそれぞれの 5α-ジヒドロステロイドに変換する酵素である。一部の5α-ジヒドロステロイドは、3α-ヒドロキシステロイド脱水素酵素 (3α-HSD) によってさらに代謝される。5α-還元酵素と3α-HSD のアイソフォームが脳内で検出されている <ref name=Compagnone2000><pubmed>10662535</pubmed></ref><ref name=DoRego2009><pubmed>19505496</pubmed></ref>。Baulieuらは、ステロイドホルモンの硫酸エステルもニューロステロイドに含まれると主張している<ref name=Baulieu1997><pubmed>9238846</pubmed></ref>。げっ歯類の脳にプレグネノロン硫酸エステルが存在するかどうかについては議論の余地があるが、ヒトの脳には相当量のプレグネノロン硫酸エステルとDHEA硫酸エステルが存在する <ref name=Schumacher2008><pubmed>18068870</pubmed></ref>。脳内ではsteroid sulfotransferaseとsteroid sulfataseが検出されている <ref name=Compagnone2000><pubmed>10662535</pubmed></ref><ref name=DoRego2009><pubmed>19505496</pubmed></ref><ref name=Schumacher2008><pubmed>18068870</pubmed></ref>。 | 5α-還元酵素は、プロゲステロン、テストステロン、および 11-デオキシコルチコステロンをそれぞれの 5α-ジヒドロステロイドに変換する酵素である。一部の5α-ジヒドロステロイドは、3α-ヒドロキシステロイド脱水素酵素 (3α-HSD) によってさらに代謝される。5α-還元酵素と3α-HSD のアイソフォームが脳内で検出されている <ref name=Compagnone2000><pubmed>10662535</pubmed></ref><ref name=DoRego2009><pubmed>19505496</pubmed></ref>。Baulieuらは、ステロイドホルモンの硫酸エステルもニューロステロイドに含まれると主張している<ref name=Baulieu1997><pubmed>9238846</pubmed></ref>。げっ歯類の脳にプレグネノロン硫酸エステルが存在するかどうかについては議論の余地があるが、ヒトの脳には相当量のプレグネノロン硫酸エステルとDHEA硫酸エステルが存在する <ref name=Schumacher2008><pubmed>18068870</pubmed></ref>。脳内ではsteroid sulfotransferaseとsteroid sulfataseが検出されている <ref name=Compagnone2000><pubmed>10662535</pubmed></ref><ref name=DoRego2009><pubmed>19505496</pubmed></ref><ref name=Schumacher2008><pubmed>18068870</pubmed></ref>。 | ||
== 受容体 == | == 受容体 == | ||
ヒトおよびマウスにおけるエストロゲン受容体(estrogen receptor; ER)として、核内受容体型のERαとERβ、ならびにGタンパク質共役受容体GPR30 (G protein-coupled receptor 30)が知られている。これらの受容体は卵巣や子宮といった生殖器官に加えて脳、心臓および肝臓など様々な組織に発現している。脳では、ニューロン、アストロサイト、ミクログリア、オリゴデンドロサイトなど、ほぼすべての細胞種で発現が認められている。 | ヒトおよびマウスにおけるエストロゲン受容体(estrogen receptor; ER)として、核内受容体型のERαとERβ、ならびにGタンパク質共役受容体GPR30 (G protein-coupled receptor 30)が知られている。これらの受容体は卵巣や子宮といった生殖器官に加えて脳、心臓および肝臓など様々な組織に発現している。脳では、ニューロン、アストロサイト、ミクログリア、オリゴデンドロサイトなど、ほぼすべての細胞種で発現が認められている。 | ||
[[ファイル:Ishihara Estrogen Fig2.png|サムネイル|'''図2. ERα、ERβの1次構造'''<br>文献<ref name=Muramatsu2000><pubmed>10733896</pubmed></ref>より引用。]] | |||
=== 核内受容体ER === | === 核内受容体ER === | ||
核内受容体のERαとERβは細胞内に局在している。細胞内のエストロゲンがERに結合すると、ERはホモ二量体(αα, ββ)あるいはヘテロ二量体(αβ)を形成して活性化する。活性化したER二量体はZnフィンガーモチーフを介してDNAに結合して遺伝子の転写を促進する('''図2''')。ERが認識する主なDNA配列はGGTCAnnnTGACCであり、エストロゲン応答エレメント(estrogen response element; ERE)と呼ばれる。ERの標的遺伝子にはCCND1やTFF1、NRIP1、GREB1などが存在する<ref name=Eeckhoute2006><pubmed>16980581</pubmed></ref><ref name=Lin2004><pubmed>15345050</pubmed></ref>。CCND1は広く細胞の増殖を促進し、TFF1は乳がん細胞の浸潤<ref name=Prest2002><pubmed>11919164</pubmed></ref>、NRIP1は乳腺の発達<ref name=Lapierre2015><pubmed>26116758</pubmed></ref>、GREB1は乳がん細胞の増殖に関わる<ref name=Hodgkinson2018><pubmed>29973689</pubmed></ref>。エストロゲンは骨代謝にも重要であり、骨代謝過程においてエストロゲン依存的な制御を受けるタンパク質群も同定されている<ref name=Pastorelli2005><pubmed>16237733</pubmed></ref>。また、ERはSERMやNCoRをリクルートして転写のリプレッサーとしても機能することが報告されている<ref name=Huang2002><pubmed>12145334</pubmed></ref><ref name=Shang2000><pubmed>11136970</pubmed></ref>。 | |||
EREを介したER依存的な経路がclassical pathwayと称される一方で、non-classical pathwayもいくつか報告されている。セカンドメッセンジャーを介したリガンド非依存的なERの活性化や膜に局在するERを介したシグナル伝達、ERと他の転写因子、例えば、AP-1やSp1、NF-κBとの相互作用を介して、ERE非依存的に遺伝子発現を制御する経路が示されている<ref name=McDevitt2008><pubmed>18534740</pubmed></ref>。 | EREを介したER依存的な経路がclassical pathwayと称される一方で、non-classical pathwayもいくつか報告されている。セカンドメッセンジャーを介したリガンド非依存的なERの活性化や膜に局在するERを介したシグナル伝達、ERと他の転写因子、例えば、AP-1やSp1、NF-κBとの相互作用を介して、ERE非依存的に遺伝子発現を制御する経路が示されている<ref name=McDevitt2008><pubmed>18534740</pubmed></ref>。 | ||
=== Gタンパク質共役受容体GPR30 === | === Gタンパク質共役受容体GPR30 === | ||
Gタンパク質共役受容体であるGPR30は細胞膜に局在し、17β-エストラジオールに対して高い親和性を示す。17β-エストラジオールに結合したGPR30はcAMPやERKを介した細胞内情報伝達を制御することが示されている<ref name=Filardo2000><pubmed>11043579</pubmed></ref><ref name=Maggiolini2010><pubmed>19767412</pubmed></ref>。 | Gタンパク質共役受容体であるGPR30は細胞膜に局在し、17β-エストラジオールに対して高い親和性を示す。17β-エストラジオールに結合したGPR30はcAMPやERKを介した細胞内情報伝達を制御することが示されている<ref name=Filardo2000><pubmed>11043579</pubmed></ref><ref name=Maggiolini2010><pubmed>19767412</pubmed></ref>。 | ||
[[ファイル:Ishihara Estrogen Fig3.png|サムネイル|'''図3. シトクロムP450アロマターゼの部分的な遺伝子構造'''<br>未翻訳の第一エクソンにおける組織特異的なプロモーターが組織特異的な転写産物に寄与する。プロモーター1.fが脳特異的なプロモーターと考えられている。]] | |||
== ニューロステロイドとしてのエストラジオール == | == ニューロステロイドとしてのエストラジオール == | ||
エストロゲンの中でも17β-エストラジオールが最も活性が強く、生体におけるエストロゲン活性の大半は17β-エストラジオールによって媒介される。脳においても、末梢と同様、17β-エストラジオールはシトクロムP450アロマターゼ(CYP19A1)によってテストステロンから合成される。シトクロムP450アロマターゼは、ヒト15番染色体のq21.2領域に1つの遺伝子としてコードされている。生殖腺、骨、乳房、脂肪、血管組織、皮膚、胎盤、脳など、多くの組織で発現しているが、スプライシングにより組織特異的な転写産物が生じる。mRNA非翻訳領域をコードする第一エクソンにおける組織特異的なプロモーターが、シトクロムP450アロマターゼの組織特異的な転写に寄与する。プロモーター1. | エストロゲンの中でも17β-エストラジオールが最も活性が強く、生体におけるエストロゲン活性の大半は17β-エストラジオールによって媒介される。脳においても、末梢と同様、17β-エストラジオールはシトクロムP450アロマターゼ(CYP19A1)によってテストステロンから合成される。シトクロムP450アロマターゼは、ヒト15番染色体のq21.2領域に1つの遺伝子としてコードされている。生殖腺、骨、乳房、脂肪、血管組織、皮膚、胎盤、脳など、多くの組織で発現しているが、スプライシングにより組織特異的な転写産物が生じる。mRNA非翻訳領域をコードする第一エクソンにおける組織特異的なプロモーターが、シトクロムP450アロマターゼの組織特異的な転写に寄与する。プロモーター1.fが脳特異的プロモーターであると考えられている('''図3''')。尚、すべての転写産物が同一のタンパク質に翻訳される。 | ||
図3 | |||
脳はエストロゲンを合成する一方、末梢で合成されたエストロゲンが脳に供給され得る。このような生体におけるエストロゲン、およびエストロゲン合成の基質であるテストステロンの動態は、川戸らの研究グループによって研究されている<ref name=Hojo2009><pubmed>19589866</pubmed></ref>。オスラットの海馬におけるテストステロン濃度は17 nM、17β-エストラジオール濃度は8 nMであった。精巣摘出したラットの実験を行って比較したところ、海馬内のテストステロンの8割は血中から供給され,2割は海馬内で合成されることが明らかとなった。一方、メスでは海馬の17β-エストラジオール(1 nM)は血中17β-エストラジオール(0.1~0.01 nM)より10倍以上も濃度が高く、また、メスでは血中から海馬に入る17β-エストラジオールの寄与は非常に低く,海馬内合成が主である。海馬における17β-エストラジオール量はオスの方がメスより8倍も多く、性腺や血中での量比とは逆転している。これらの知見から、テストステロンは血液脳関門を透過する一方、17β-エストラジオールの血液脳関門透過性は低いと考えられる。なお、脳においてニューロンおよびアストロサイトが主に17β-エストラジオールを合成すると考えてられており、オリゴデンドロサイトやミクログリアなどの細胞種の17β-エストラジオール合成への寄与は小さい<ref name=Brann2022><pubmed>36552208</pubmed></ref>。 | 脳はエストロゲンを合成する一方、末梢で合成されたエストロゲンが脳に供給され得る。このような生体におけるエストロゲン、およびエストロゲン合成の基質であるテストステロンの動態は、川戸らの研究グループによって研究されている<ref name=Hojo2009><pubmed>19589866</pubmed></ref>。オスラットの海馬におけるテストステロン濃度は17 nM、17β-エストラジオール濃度は8 nMであった。精巣摘出したラットの実験を行って比較したところ、海馬内のテストステロンの8割は血中から供給され,2割は海馬内で合成されることが明らかとなった。一方、メスでは海馬の17β-エストラジオール(1 nM)は血中17β-エストラジオール(0.1~0.01 nM)より10倍以上も濃度が高く、また、メスでは血中から海馬に入る17β-エストラジオールの寄与は非常に低く,海馬内合成が主である。海馬における17β-エストラジオール量はオスの方がメスより8倍も多く、性腺や血中での量比とは逆転している。これらの知見から、テストステロンは血液脳関門を透過する一方、17β-エストラジオールの血液脳関門透過性は低いと考えられる。なお、脳においてニューロンおよびアストロサイトが主に17β-エストラジオールを合成すると考えてられており、オリゴデンドロサイトやミクログリアなどの細胞種の17β-エストラジオール合成への寄与は小さい<ref name=Brann2022><pubmed>36552208</pubmed></ref>。 | ||
74行目: | 64行目: | ||
=== 認知機能 === | === 認知機能 === | ||
1996年、Lancet誌に、閉経後の女性にエストロゲンを投与すると、アルツハイマー病発症のリスクが低下するとの論文が掲載され、エストロゲンと認知機能との関連性がとりわけ注目される契機となった<ref name=Tang1996><pubmed>8709781</pubmed></ref>。また、乳がん患者におけるシトクロムP450アロマターゼ阻害剤治療に係る知見から、エストロゲンが言語および視覚学習/記憶、実行機能、処理速度に重要であることが示唆された<ref name=Bender2007><pubmed>17898668</pubmed></ref><ref name=Phillips2011><pubmed>21046229</pubmed></ref><ref name=Rocha-Cadman2012><pubmed>22677000</pubmed></ref><ref name=Underwood2018><pubmed>29264751</pubmed></ref>。また、シトクロムP450アロマターゼ阻害薬による記憶障害が可逆的であることも明らかとなった。げっ歯類を用いてより直接的な研究が実施されており、例えば、雄および雌のラットに 14日間レトロゾールを脳室内投与したところ、海馬17β-エストラジオール濃度が低下し、海馬錐体ニューロンの発火頻度が減少した。またこのとき、作業記憶と新規物体認識記憶にレトロゾール用量依存的な障害が生じた<ref name=Marbouti2020><pubmed>32882397</pubmed></ref>。同様に、雄および雌のマウスにレトロゾールを投与すると、空間記憶障害が生じた<ref name=Zhao2018><pubmed>29452160</pubmed></ref>。さらに、レトロゾール投与により記憶の固定が損なわれたマウスに外因的に E2を補充すると、記憶が回復する<ref name=Tuscher2016><pubmed>27178577</pubmed></ref>。これらの知見から、17β-エストラジオールは記憶や学習に役割を果たしていると考えらえている。 | 1996年、Lancet誌に、閉経後の女性にエストロゲンを投与すると、アルツハイマー病発症のリスクが低下するとの論文が掲載され、エストロゲンと認知機能との関連性がとりわけ注目される契機となった<ref name=Tang1996><pubmed>8709781</pubmed></ref>。また、乳がん患者におけるシトクロムP450アロマターゼ阻害剤治療に係る知見から、エストロゲンが言語および視覚学習/記憶、実行機能、処理速度に重要であることが示唆された<ref name=Bender2007><pubmed>17898668</pubmed></ref><ref name=Phillips2011><pubmed>21046229</pubmed></ref><ref name=Rocha-Cadman2012><pubmed>22677000</pubmed></ref><ref name=Underwood2018><pubmed>29264751</pubmed></ref>。また、シトクロムP450アロマターゼ阻害薬による記憶障害が可逆的であることも明らかとなった。げっ歯類を用いてより直接的な研究が実施されており、例えば、雄および雌のラットに 14日間レトロゾールを脳室内投与したところ、海馬17β-エストラジオール濃度が低下し、海馬錐体ニューロンの発火頻度が減少した。またこのとき、作業記憶と新規物体認識記憶にレトロゾール用量依存的な障害が生じた<ref name=Marbouti2020><pubmed>32882397</pubmed></ref>。同様に、雄および雌のマウスにレトロゾールを投与すると、空間記憶障害が生じた<ref name=Zhao2018><pubmed>29452160</pubmed></ref>。さらに、レトロゾール投与により記憶の固定が損なわれたマウスに外因的に E2を補充すると、記憶が回復する<ref name=Tuscher2016><pubmed>27178577</pubmed></ref>。これらの知見から、17β-エストラジオールは記憶や学習に役割を果たしていると考えらえている。 | ||
[[ファイル:Ishihara Estrogen Fig4.png|サムネイル|'''図4. エストロゲンによる神経保護メカニズムの概要'''<br>文献<ref name=Ishihara2015><pubmed>25815107</pubmed></ref>を改変]] | |||
=== 神経保護=== | === 神経保護=== | ||
エストロゲンは、アルツハイマー病やパーキンソン病、脳梗塞など、様々な要因により生じる神経障害に対して保護作用を有していることが知られている<ref name=Brann2007><pubmed>17379265</pubmed></ref>。エストロゲンの神経保護メカニズムはgenomic signaling pathwaysとnon-genomic signaling pathwaysに大別される。 | エストロゲンは、アルツハイマー病やパーキンソン病、脳梗塞など、様々な要因により生じる神経障害に対して保護作用を有していることが知られている<ref name=Brann2007><pubmed>17379265</pubmed></ref>。エストロゲンの神経保護メカニズムはgenomic signaling pathwaysとnon-genomic signaling pathwaysに大別される。 | ||
17β-エストラジオールによる神経保護を媒介する遺伝子群について'''表1'''に示した。17β-エストラジオールは酸化ストレスやアポトーシス、炎症に関連する遺伝子の発現を制御することにより神経保護作用を示す。 | 17β-エストラジオールによる神経保護を媒介する遺伝子群について'''表1'''に示した。17β-エストラジオールは酸化ストレスやアポトーシス、炎症に関連する遺伝子の発現を制御することにより神経保護作用を示す。 | ||
17β-エストラジオールによるnon-genomic signaling pathwaysを介した神経保護には、主にキナーゼ経路が関わると考えられている。ERK経路の活性化や<ref name=Mize2003><pubmed>12488359</pubmed></ref>Akt経路の活性化<ref name=Zhang2009><pubmed>19889994</pubmed></ref>、Wntシグナル伝達の調節<ref name=Quintanilla2005><pubmed>15659394</pubmed></ref>などがメカニズムである。 | |||
また、17β-エストラジオールはミトコンドリア効率の改善<ref name=Jones2009><pubmed>18930048</pubmed></ref>や活性酸素種などの高反応性化学物質の直接消去も行う<ref name=Behl1997><pubmed>9106616</pubmed></ref>。さらに、アストロサイトのグルタミン酸動態に干渉したり<ref name=Acaz-Fonseca2014><pubmed>24444786</pubmed></ref>、ミクログリアの炎症反応を抑制したりと<ref name=Bruce-Keller2000><pubmed>11014219</pubmed></ref>、多種多様なメカニズムにより神経保護に役割を果たす。17β-エストラジオールによる神経保護メカニズムの概要を'''図4'''に示した。 | |||
{| class="wikitable" | {| class="wikitable" | ||
84行目: | 78行目: | ||
! 標的遺伝子(発現変化) !! 作用 | ! 標的遺伝子(発現変化) !! 作用 | ||
|- | |- | ||
| SOD1(↑) || 活性酸素種の除去 | | スーパーオキシドジスムターゼ1 (SOD1) (↑) || 活性酸素種の除去 | ||
|- | |- | ||
| SOD2(↑) || 活性酸素種の除去 | | スーパーオキシドジスムターゼ2 (SOD2)(↑) || 活性酸素種の除去 | ||
|- | |- | ||
| GPx(↑) || 活性酸素種の除去 | | グルタチオンペルオキシダーゼ (GPx) (↑) || 活性酸素種の除去 | ||
|- | |- | ||
| | | カタラーゼ (↑) || 活性酸素種の除去 | ||
|- | |- | ||
| iNOS(↓) || 反応性ラジカルの減少 | | 誘導型誘導酵素 (iNOS) (↓) || 反応性ラジカルの減少 | ||
|- | |- | ||
| nNOS(↓) || 反応性ラジカルの減少 | | 神経型誘導酵素 (nNOS) (↓) || 反応性ラジカルの減少 | ||
|- | |- | ||
| GST(↑) || 活性酸素種由来反応性代謝物の除去 | | グルタチオン-S-トランスフェラーゼ (GST) (↑) || 活性酸素種由来反応性代謝物の除去 | ||
|- | |- | ||
| NQO1 (↑) || 活性酸素種由来反応性代謝物の除去 | | NAD(P)Hキノンオキシドレダクターゼ1 (NQO1) (↑) || 活性酸素種由来反応性代謝物の除去 | ||
|- | |- | ||
| | | セラジン-1 (↑) || 抗アポトーシス | ||
|- | |- | ||
| | | ニューログロブリン (↑) || 抗アポトーシス、抗炎症 | ||
|- | |- | ||
| | | インターロイキン-6 (↓) || 抗炎症 | ||
|- | |- | ||
| IP-10 (↓) || 抗炎症 | | インターフェロンガンマ誘導性タンパク質10 (IP-10 )(↓) || 抗炎症 | ||
|- | |- | ||
| MMP-9 (↓) || 抗炎症 | | マトリックスメタロプロテイナーゼ-9 (MMP-9) (↓) || 抗炎症 | ||
|- | |- | ||
| | | シトクロムc酸化酵素 (↑) || ミトコンドリア効率の増大 | ||
|- | |- | ||
| Bax(↓) || 抗アポトーシス | | Bax(↓) || 抗アポトーシス | ||
|} | |} | ||
文献<ref name=Ishihara2015><pubmed>25815107</pubmed></ref>より引用 | |||
== 参考文献 == | == 参考文献 == |