視覚性トップダウン型注意とボトムアップ型注意

提供:脳科学辞典
2017年1月8日 (日) 18:06時点におけるTfuruya (トーク | 投稿記録)による版 (ページの作成:「<div align="right"> <font size="+1">[http://researchmap.jp/tadashiogawa 小川 正]</font><br> ''京都大学 次世代研究創成ユニット''<br> DOI:<selfdoi />...」)

(差分) ← 古い版 | 承認済み版 (差分) | 最新版 (差分) | 新しい版 → (差分)
ナビゲーションに移動 検索に移動

小川 正
京都大学 次世代研究創成ユニット
DOI:10.14931/bsd.7335 原稿受付日:2017年1月6日 原稿完成日:2017年月日
担当編集委員:田中 啓治(国立研究開発法人理化学研究所 脳科学総合研究センター)

英:Visual top-down attention and bottom-up attention

 現実世界には多くの物体が存在し複雑な視覚世界を構成しているため、網膜には膨大な情報が入力される。しかしながら、脳がすべての視覚情報を高精度に処理することは困難であるため、生体にとって重要と思われる視覚情報を選択して認知や合目的な行動に結びつけている。このような神経情報処理を実現する仕組みのひとつとして「注意」があると考えられている。

ボトムアップ型注意とトップダウン型注意

 注意には2種類のメカニズムが存在すると考えられており、刺激検出課題(Posner, 1980)や視覚探索課題(Egeth and Yantis 1997; Theeuwes, 2010)を用いた研究によって注意メカニズムの性質を考える上で重要な知見が与えられてきた。

 2種類の注意メカニズムのうち1つはボトムアップ型注意(bottom-up attention)と呼ばれるものであり、複数刺激のなかで1つの刺激が周囲の刺激と顕著に異なる場合や(Duncan and Humphreys 1989; Nothdurft 1993; Treisman and Gelade 1980)、視覚刺激が突然出現した場合(Posner, 1980)、その刺激に対して注意が受動的に惹きつけられる。例えば、視覚探索課題において目標(正立した‘L’字型の刺激)を探すとき、多数の青色の妨害刺激のなかで橙色の目標刺激が一つだけ存在するような状況であれば、目標刺激が目立つ(ポップアウトする)ために容易に見つけ出すことができる(図1A)。もう一つはトップダウン型注意(top-down attention)と呼ばれるものであり、選ぶべき刺激について事前知識をもっている場合、能動的にバイアスをかけることによって目的とする刺激を選択することができる。例えば、さまざまな形・色をした刺激が混在しているために目標刺激(正立した‘L’を目標刺激)が目立たない状況であっても、目標の位置や刺激特徴に注意を向けることによって見出すことができる(図1B)。

 視覚探索課題において「呈示される刺激の数」と「目標を見出すまでの時間」の関係性は、2種類の注意機構の重要な性質を明らかにする(図1C)。目標刺激が目立たない条件では視野内に存在する刺激総数の増加にともなって探索時間が増大するが(図1C、実線)、目標刺激が目立つ条件のときは目標刺激を見出すまでに要する探索時間が視野内の刺激の総数に依らずにほぼ一定になる(破線)。このような結果は、ボトムアップ型注意による選択はすべての刺激(すなわち視野全体)に対して並列的に働くが、トップダウン型注意による選択は個々の刺激に対して逐次的に働くことを示唆している(Treisman and Gelade 1980)。

ボトムアップ型注意の神経基盤になると考えられる文脈依存的な周辺抑制

 V1野、V2野、V4野、MT野などの視覚野では、ニューロンの受容野内に視覚刺激が呈示されることによって視覚性応答が生じる。通常、受容野外に視覚刺激を単独で呈示しても(受容野の定義から)視覚性応答が生じることはない。しかしながら、受容野内に刺激を呈示しながら、受容野外に別の刺激を同時に呈示すると、受容野外刺激によって視覚性応答が修飾されることが見出されている(Allman et al., 1985)。新たに見出された周辺の受容野構造と区別するため、従来から報告されていた受容野は古典的受容野(classical receptive field)と呼ばれる。

 KnierimとVan Essenは、注視課題を遂行しているサルのV1野から単一ニューロン活動を記録し、古典的受容野内の刺激に対する応答が古典的受容野外の刺激よってどのような修飾効果を受けるかを調べた(Knierim and van Essen 1992)。実験では、単独の線分刺激が受容野内刺激として、その周囲をとりまくように多数の線分刺激が受容野外刺激として呈示された(図2)。多くのV1ニューロンでは受容野外刺激による修飾効果は抑制性に作用した(周辺抑制、surround suppression)、すなわち1つだけの刺激を受容野内にしたときに神経活動強度が最大となり(図2A)、周辺刺激を追加すると神経活動は減弱する(図2B, C)。さらに詳しく調べると、その抑制効果は受容野内刺激と受容野外刺激の方位(傾き)が同じであるときに最大(図2B)、直交するときに最小となる傾向を示した(図2C)。すなわち、受容野内刺激と受容野外刺激の方位コントラストが小さい(非ポップアウト)条件にくらべて、方位コントラストが大きい(ポップアウト)条件ではニューロン応答が相対的に強くなった。このような周辺抑制の効果はトップダウン型注意が起こり得ない麻酔下の動物においても観察されることから、ボトムアップ型注意を生じさせるための潜在的な神経基盤になっていると考えられている(Nothdurft et al. 1999)。受容野外刺激の特徴よってニューロン活動に対する影響が変わるため、このような修飾作用を文脈依存性(contextual modulation)と呼ぶこともある。

 V1野以外の領野でも、色(V4野)や動き(MT野)の特徴次元で古典的受容野内外にコントラストがある場合、同様の周辺抑制効果が生じる(Schein and Desimone 1990; Tanaka et al. 1986)。また周辺抑制の効果は視覚野だけではなく、頭頂連合野にあるLIP野(Falkner et al., 2010)や前頭連合野にあるFEF野(Schall et al., 2004; Cavanaugh et al., 2012)にも存在し、ポップアウトする刺激に対してニューロン活動が強くなる。しかしながら、これらの領野では刺激特徴に対する選択性が乏しいため、ポップアウト刺激に対するニューロン活動の増大は視覚野からの入力を反映していると考えられる。むしろLIP野やFEF野における周辺抑制は、ポップアウト刺激への活動増強と非ポップアウト刺激への活動減衰による活動強度コントラストを生じさせるために重要な役割を果たしている(Nishida et al., 2013)。なおポップアウト刺激を無視するような課題訓練を行うと、ポップアウト刺激に対するLIPニューロンの活動増強が弱まることが報告されている(Ipata et al., 2006)。