アドレナリン

2012年11月30日 (金) 19:35時点におけるWikiSysop (トーク | 投稿記録)による版 (→‎構造)

英:adrenaline, epinephrine 独:Adrenalin, Epinephrin 仏:adrénaline, épinéphrine 略称:Ad, EP

(R)-(–)-L-Epinephrine or (R)-(–)-L-adrenaline
Systematic (IUPAC) name
(R)-4-(1-hydroxy-
2-(methylamino)ethyl)benzene-1,2-diol
Clinical data
AHFS/Drugs.com monograph
MedlinePlus a603002
Pregnancy cat. A (AU) C (US)
Legal status Prescription Only (S4) (AU) POM (UK) -only (US)
Routes IV, IM, endotracheal, IC
Pharmacokinetic data
Bioavailability Nil (oral)
Metabolism adrenergic synapse (MAO and COMT)
Half-life 2 minutes
Excretion Urine
Identifiers
CAS number 51-43-4 YesY
ATC code A01AD01 B02BC09 (WHO) C01CA24 (WHO) R01AA14 (WHO) R03AA01 (WHO) S01EA01 (WHO)
PubChem CID 5816
IUPHAR ligand 509
DrugBank DB00668
ChemSpider 5611 YesY
UNII YKH834O4BH YesY
KEGG D00095 YesY
ChEBI CHEBI:28918 YesY
ChEMBL CHEMBL679 YesY
Chemical data
Formula C9H13NO3 
Mol. mass 183.204 g/mol
SMILES eMolecules & PubChem
 YesY (what is this?)  (verify)

同義語:エピネフリン

 アドレナリンはモノアミンの一種、またカテコールアミンの一種である。生体内において、神経伝達物質またはホルモンとして働く。生体内ではチロシンから合成される。受容体アドレナリン受容体と呼ばれるファミリーであり、Gタンパク質共役7回膜貫通型である。中枢神経系では、後脳髄質(延髄でしょうか?)にアドレナリン作動性神経細胞が存在し、そこからほぼ脳全域に投射している。

発見と用語

 1893年、George Oliver(イギリス)は副腎(Adrenal gland)に薬理学的に劇的な効果を持つ物質が含まれることを発見した[1]。1897年、John Abel(アメリカ)は副腎から粗抽出物を調製、これをエピネフリンと呼んだが[2]、これには生理活性がなかった[3]。その後、1901年、高峰譲吉と上中啓三は副腎から生理活性物質を精製した[4]。これをParke, Davis & CoはAdrenalineという名前で販売した[3]

 現在、アドレナリンとエピネフリンという呼称については、国により使用頻度が異なる。歴史的にはアドレナリンの方が正しい呼称と考えられ、欧州ではアドレナリンの方が一般的である。しかし、米国の、特に医学分野では、John Abelの影響の名残でエピネフリンの方が一般的である。日本では2006年の第十五改正日本薬局方よりアドレナリンが一般名称となった。

構造

 カテコール基と二級アミノ基をもつ、カテコールアミン神経伝達物質の一種。また、ドーパミンセロトニンヒスタミンなどとともにモノアミン系神経伝達物質のグループを形成する。

合成

 
図1 アドレナリン生合成経路

 脳の一部の神経細胞、および副腎髄質中にあるクロム親和性細胞において合成される(図2)。他に、も合成されている(「他に、」の後に何か単語が入る?)。生合成に関わる酵素は以下の通り。

  • チロシン水酸化酵素 (tyrosine hydroxylase, TH):EC 1.14.16.2。チロシンよりL-DOPA (L-3,4-dihydroxyphenylalanine)を合成する[5] [6] [7]。反応には、テトラヒドロビオプテリン (tetrahydrobiopterin), O2, Fe2+が必要。カテコールアミン合成において、律速段階の酵素であると考えられている。その活性制御は、主にタンパク質の量と、リン酸化による。全てのカテコールアミン産生細胞に存在する。補因子であるテトラヒドロビオプテリンはGTPより合成される。律速酵素はGTPシクロヒドラーゼI (GTP cyclohydrolase I)である[8]
  • 芳香族アミノ酸脱炭酸酵素 (aromatic L-amino acid decarboxylase, AADC):EC 4.1.1.28。L-DOPAよりドーパミンを合成する。他に、この酵素は5-ヒドロキシトリプトファン (5-hydroxytryptophan)からセロトニン(5-hydroxytryptamine, 5-HT)を合成する反応も触媒する。ピリドキサールリン酸 (pyridoxal phosphate)が必要。全てのカテコールアミン産生細胞に存在する[9]
  • ドーパミンβ水酸化酵素 (dopamine β-hydroxylase, DBH):EC 1.14.2.1。ドーパミンよりノルアドレナリンを合成する。アスコルビン酸、O2、Cu2+が必要。ノルアドレナリン、アドレナリン産生細胞のシナプス小胞の中に存在し、シナプス小胞に取り込まれたドーパミンをノルアドレナリンに変換する[10]
  • フェニルエタノールアミン-N-メチル基転移酵素 (phenylethanolamine N-methyltransferase, PNMT):EC 2.1.1.28。ノルアドレナリンのアミノ基にメチル基を付加し、アドレナリンを生合成する。メチル基のドナーとしてチロシンS-アデノシルメチオニン (S-adenosylmethione)が必要。ヒトでは一つの遺伝子があり(Gene ID 5409)、転写産物は副腎髄質に多く、心臓、および脳幹にも存在する[11]。PNMTは細胞質に局在するが、顆粒内にもあるとの説もある[12]。そのため、アドレナリンの生合成が、細胞質で起きるのか、ノルアドレナリンが合成された顆粒内で起きるのかについては、まだはっきりと分かっていない。

放出、再取り込み

 アドレナリンの前駆体であるドーパミンは小胞型モノアミントランスポーター(vesicular monoamine transporter, vMAT)によりシナプス小胞内に輸送される。vMAT1は主に副腎のクロム親和性細胞、vMAT2は神経細胞で発現している。vMATはH+との交換輸送によりモノアミンを小胞内に蓄積させる[13]。 アドレナリンの放出は他の神経伝達物質と同様に、神経活動依存的、カルシウム依存的なシナプス小胞のエキソサイトーシスによる。 アドレナリンの再取り込みの機構はまだよく理解されていない。アドレナリン特異的なトランスポーターは、ほ乳類では報告されていない。

代謝分解

 アドレナリンの代謝分解には次の二つの酵素が重要である。

  • モノアミン酸化酵素(monoamine oxidase, MAO):MAOはモノアミンのアミノ基をアルデヒド基に酸化する。MAOはミトコンドリア外膜に局在しに存在し、細胞内のアドレナリン(再取込みされたものを含む)の分解に関与する。ただしMAOに比べてvMAT2の方がアドレナリンに対する親和性がずっと高いため、シナプス小胞への取り込みの方がMAOによる分解よりも優先されると考えられる[14]。MAOにはMAO-AMAO-Bがあり、二つの別の遺伝子によりコードされている。MAO-AとMAO-Bはモノアミン作動性神経細胞およびグリア細胞に発現しているが、発現量は細胞の種類により異なり、また動物種によっても違いが見られる[14]。(ノルアドレナリンをアドレナリンに修正)

 脳においてアドレナリンの多くは、ノルアドレナリンと同様、MAO、アルデヒド還元酵素、およびCOMTにより3-メトキシ-4-ヒドロキシフェニルグリコール (3-methoxy-4-hydroxyphenylglycol, MHPG)へ代謝され、さらに3-メトキシ-4-ヒドロキシマンデル酸 (3-methoxy-4-hydroxymandelic acid) (またはバニリルマンデル酸, vanillylmandelic acid, VMA)となって尿中に排出される[16]。MHPGの硫酸化物も尿中に排出される[16]

主たる投射系と機能

 中枢神経系 中枢神経系におけるアドレナリン作動性の神経細胞は、主に次の二つの部位にある。

  • C1:髄質の腹外側にありノルアドレナリン作動性神経細胞核A1に近接する。
  • C2:髄質の背側にありノルアドレナリン作動性神経細胞核A2に近接する。C1、C2共に視床下部に上行性投射をし、循環器系や内分泌系の調節を行う。

 末梢神経系 末梢神経系の節後神経細胞は、ノルアドレナリンと共にアドレナリン作動性でもある。脊髄中の節前神経細胞よりアセチルコリン性の入力を受け、ノルアドレナリン性の出力を内臓器官に与える。その結果、血管の収縮、血圧の上昇、心拍数の増加、などを引き起こす。

受容体

 アドレナリンはノルアドレナリンと共にアドレナリン受容体(adrenergic receptorまたはadrenoceptor)に結合し活性化する。αおよびβのサブファミリーからなる。より細かくは、α1A1D、α2A2C、β1-β3、から構成されている。いずれも三量体Gタンパク質共役型受容体である。α1はGq、α2はGi、β13はGsと共役している。

 末梢神経系において、アドレナリンは、低濃度ではβ1およびβ2アドレナリン受容体に作用し、高濃度ではα1を介した作用が主となる。(ノルアドレナリンはα1およびβ1アドレナリン受容体のアゴニストとして作用する。)

受容体 アゴニスト選択性 主な作用 細胞内シグナル アゴニスト アンタゴニスト
α1:
A, B, D
ノルアドレナリン > アドレナリン >> イソプレナリン 平滑筋収縮 Gq: ホスホリパーゼC (PLC) 活性化によりイノシトール3リン酸ジアシルグリセロール、細胞内カルシウムの上昇

(α1アゴニスト)

(α1アンタゴニスト)

α2:
A, B, C
アドレナリンノルアドレナリン >> イソプレナリン 自己受容体活性化による神経伝達物質放出減少
心筋弛緩、血小板活性化
Gi: アデニル酸シクラーゼ抑制, cAMP減少

(α2アゴニスト)

(α2アンタゴニスト)

β1 イソプレナリン > アドレナリン = ノルアドレナリン 心筋収縮 Gs: アデニル酸シクラーゼ活性化、cAMP上昇

(β1アゴニスト)

(β1アンタゴニスト)

β2 イソプレナリン > アドレナリン >> ノルアドレナリン 平滑筋弛緩 Gs: アデニル酸シクラーゼ活性化、cAMP上昇 (Giと共役することもある)

(β2アゴニスト)

(β2アンタゴニスト)

β3 イソプレナリン = ノルアドレナリン > アドレナリン 脂肪代謝亢進、膀胱排尿筋弛緩 Gs: アデニル酸シクラーゼ活性化、cAMP上昇

表 アドレナリン性受容体 Wikipedia項目Adrenergic Receptorから翻訳、修正の上転載。 α1C受容体と呼ばれる物は、存在しない。

関連項目


参考文献

  1. G Oliver, EA Schäfer
    On the physiological action of extract of the suprarenal capsules
    J. Physiol. Lond.:1894;16;i-iv
  2. JJ Abel
    On epinephrin, the active constituent of the suprarenal capsule and its compounds
    Proc. Am. Phys. Soc.: 1898; 3­4; 3­5
  3. 3.0 3.1 Aronson, J.K. (2000).
    "Where name and image meet"--the argument for "adrenaline". BMJ (Clinical research ed.), 320(7233), 506-9. [PubMed:10678871] [PMC] [WorldCat] [DOI]
  4. J Takamine
    The isolation of the active principle of the suprarenal gland
    J. Physiol. Lond.:1901;27;30P-39P
  5. Dunkley, P.R., Bobrovskaya, L., Graham, M.E., von Nagy-Felsobuki, E.I., & Dickson, P.W. (2004).
    Tyrosine hydroxylase phosphorylation: regulation and consequences. Journal of neurochemistry, 91(5), 1025-43. [PubMed:15569247] [WorldCat] [DOI]
  6. Daubner, S.C., Le, T., & Wang, S. (2011).
    Tyrosine hydroxylase and regulation of dopamine synthesis. Archives of biochemistry and biophysics, 508(1), 1-12. [PubMed:21176768] [PMC] [WorldCat] [DOI]
  7. Nagatsu, T. (1989).
    The human tyrosine hydroxylase gene. Cellular and molecular neurobiology, 9(3), 313-21. [PubMed:2575455] [WorldCat] [DOI]
  8. Thöny, B., Auerbach, G., & Blau, N. (2000).
    Tetrahydrobiopterin biosynthesis, regeneration and functions. The Biochemical journal, 347 Pt 1, 1-16. [PubMed:10727395] [PMC] [WorldCat]
  9. Berry, M.D., Juorio, A.V., Li, X.M., & Boulton, A.A. (1996).
    Aromatic L-amino acid decarboxylase: a neglected and misunderstood enzyme. Neurochemical research, 21(9), 1075-87. [PubMed:8897471] [WorldCat] [DOI]
  10. Rush, R.A., & Geffen, L.B. (1980).
    Dopamine beta-hydroxylase in health and disease. Critical reviews in clinical laboratory sciences, 12(3), 241-77. [PubMed:6998654] [WorldCat] [DOI]
  11. Ziegler, M.G., Bao, X., Kennedy, B.P., Joyner, A., & Enns, R. (2002).
    Location, development, control, and function of extraadrenal phenylethanolamine N-methyltransferase. Annals of the New York Academy of Sciences, 971, 76-82. [PubMed:12438093] [WorldCat] [DOI]
  12. Nagatsu, I., & Kondo, Y. (1974).
    Immunoelectronmicroscopic localization of phenylethanolamine-n-methyltransferase in the bovine adrenal medulla. Histochemistry, 42(4), 351-8. [PubMed:4615087] [WorldCat] [DOI]
  13. Erickson, J.D., & Varoqui, H. (2000).
    Molecular analysis of vesicular amine transporter function and targeting to secretory organelles. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 14(15), 2450-8. [PubMed:11099462] [WorldCat] [DOI]
  14. 14.0 14.1 Youdim, M.B., Edmondson, D., & Tipton, K.F. (2006).
    The therapeutic potential of monoamine oxidase inhibitors. Nature reviews. Neuroscience, 7(4), 295-309. [PubMed:16552415] [WorldCat] [DOI]
  15. Chen, J., Song, J., Yuan, P., Tian, Q., Ji, Y., Ren-Patterson, R., ..., & Weinberger, D.R. (2011).
    Orientation and cellular distribution of membrane-bound catechol-O-methyltransferase in cortical neurons: implications for drug development. The Journal of biological chemistry, 286(40), 34752-60. [PubMed:21846718] [PMC] [WorldCat] [DOI]
  16. 16.0 16.1 D E Golan, A H Tashjian Jr, E J Armstrong, A W Armstrong
    Principles of Pharmacology, Second Edition
    Wolters Kluwer Health (Philadelphia):2002


(執筆者:徳岡宏文、一瀬宏 担当編集者:尾藤晴彦)