「小胞輸送」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
[[Image:図1 メンブレントラフィックの基本原理.jpg|thumb|right|<b>メンブレントラフィックの基本原理</b><br />メンブレントラフィックの基本は、まず供給側のオルガネラの膜の一部が出芽して、その根本の部分で切り取られて輸送小胞が形成する。その際、小胞に入るべき内腔成分と膜成分の選別が行われる。輸送小胞は細胞内骨格などに沿って特定の受容側のオルガネラに向かって移動し、受容側のオルガネラ膜と接着し、その後膜融合することで内腔成分および膜成分の輸送が完了する。受容側が細胞膜の場合には、内腔成分(分泌因子)が細胞外へと放出される(特に開口放出あるいはエクソサイトーシスと呼ばれる)。]]  
[[Image:図1 メンブレントラフィックの基本原理.jpg|thumb|right|<b>小胞輸送の基本原理</b><br />小胞輸送の基本は、まず供給側のオルガネラの膜の一部が出芽して、その根本の部分で切り取られて輸送小胞が形成する。その際、小胞に入るべき内腔成分と膜成分の選別が行われる。輸送小胞は細胞内骨格などに沿って特定の受容側のオルガネラに向かって移動し、受容側のオルガネラ膜と接着し、その後膜融合することで内腔成分および膜成分の輸送が完了する。受容側が細胞膜の場合には、内腔成分(分泌因子)が細胞外へと放出される(特に開口放出あるいはエクソサイトーシスと呼ばれる)。]]  


英語名: vesicular transport
英語名: vesicular transport
5行目: 5行目:
同義語:膜トラフィッキング(membrane trafficking) 、メンブレントラフィック(membrane traffic)、細胞内膜輸送(intracellular membrane traffic)、細胞内ロジスティクス(cellular logistics)
同義語:膜トラフィッキング(membrane trafficking) 、メンブレントラフィック(membrane traffic)、細胞内膜輸送(intracellular membrane traffic)、細胞内ロジスティクス(cellular logistics)


 小胞輸送(vesicular transport)とは、膜の分裂や融合により[[wikipedia:JA:オルガネラ|オルガネラ]]同士あるいは[[細胞膜]]とオルガネラの間で、[[小胞]](膜)を介して[[wikipedia:JA:タンパク質|タンパク質]]や[[wikipedia:JA:脂質|脂質]]などの輸送や、細胞外へ[[wikipedia:JA:分泌|分泌]]性因子の放出を行う機構である。この機構は全ての[[wikipedia:JA:真核細胞|真核細胞]]に保存されており、[[神経細胞]]においては[[wikipedia:JA:膜タンパク質|膜タンパク質]]の[[軸索]]・[[樹状突起]]への[[極性輸送]]、[[神経突起]]の伸長や分岐、[[神経伝達物質]]の[[放出]]、さらには細胞内物質の品質管理([[神経変性疾患]]の原因となるタンパク質凝集塊の除去)など様々な現象に利用されている。  
 小胞輸送とは、膜の分裂や融合により[[wikipedia:JA:オルガネラ|オルガネラ]]同士あるいは[[細胞膜]]とオルガネラの間で、[[小胞]](膜)を介して[[wikipedia:JA:タンパク質|タンパク質]]や[[wikipedia:JA:脂質|脂質]]などの輸送や、細胞外へ[[wikipedia:JA:分泌|分泌]]性因子の放出を行う機構である。この機構は全ての[[wikipedia:JA:真核細胞|真核細胞]]に保存されており、[[神経細胞]]においては[[wikipedia:JA:膜タンパク質|膜タンパク質]]の[[軸索]]・[[樹状突起]]への[[極性輸送]]、[[神経突起]]の伸長や分岐、[[神経伝達物質]]の[[放出]]、さらには細胞内物質の品質管理([[神経変性疾患]]の原因となるタンパク質凝集塊の除去)など様々な現象に利用されている。  


==概要 ==
==概要 ==


 真核細胞の細胞内には様々な細胞内小器官(オルガネラ:organelle)が存在しており、これらのオルガネラが機能するためには、それぞれのオルガネラで働く分子が固有のオルガネラへと正しく輸送される必要がある。特に、[[小胞体]](ER, endoplasmic reticulum)、[[ゴルジ体]](Golgi apparatus/body)、[[エンドソーム]](endosome)、[[リソソーム]](lysosome)などのオルガネラ間および細胞表面からの[[エンドサイトーシス]]によって細胞内に取り込まれた[[受容体]]タンパク質などの輸送は、脂質二重膜からなる小胞(膜)によって制御されており、小胞輸送(膜トラフィッキング、メンブレントラフィック、細胞内膜輸送など)と総称される。なお、日本語で単に「[[膜輸送]]」と表記されることもあるが、膜輸送にはmembrane trafficとmembrane transportの二つの意味があり、後者のmembrane transportは[[チャネル]]や[[トランスポーター]]による[[生体膜]]を貫通した物質輸送を指しmembrane trafficとは全く異なる機構であることから、ここでは混乱を避けるためにメンブレントラフィックという言葉を使用する。また最近では、小胞輸送は細胞内における「原材料の調達から製品消費までのものの流れの総合的なマネジメント」に携わるということで、経済用語にちなんで細胞内ロジスティクス(cellular logistics)と呼ばれることもある。  
 真核細胞の細胞内には様々な細胞内小器官(オルガネラ:organelle)が存在しており、これらのオルガネラが機能するためには、それぞれのオルガネラで働く分子が固有のオルガネラへと正しく輸送される必要がある。特に、[[小胞体]](ER, endoplasmic reticulum)、[[ゴルジ体]](Golgi apparatus/body)、[[エンドソーム]](endosome)、[[リソソーム]](lysosome)などのオルガネラ間および細胞表面からの[[エンドサイトーシス]]によって細胞内に取り込まれた[[受容体]]タンパク質などの輸送は、脂質二重膜からなる小胞(膜)によって制御されており、小胞輸送(膜トラフィッキング、メンブレントラフィック、細胞内膜輸送など)と総称される。なお、日本語で単に「[[膜輸送]]」と表記されることもあるが、膜輸送にはmembrane trafficとmembrane transportの二つの意味があり、後者のmembrane transportは[[チャネル]]や[[トランスポーター]]による[[生体膜]]を貫通した物質輸送を指しmembrane trafficとは全く異なる機構であることから、ここでは混乱を避けるために小胞輸送という言葉を使用する。また最近では、小胞輸送は細胞内における「原材料の調達から製品消費までのものの流れの総合的なマネジメント」に携わるということで、経済用語にちなんで細胞内ロジスティクス(cellular logistics)と呼ばれることもある。  


 小胞輸送は非常に多様性に富む現象であるが、基本的には図1に示す一連のプロセスにより成り立っている。まず、送り手のオルガネラの膜の一部が[[出芽]](budding)して、根本で切り取られて[[輸送小胞]](transport vesicle)となる。その際、輸送小胞に入る内腔成分と膜成分の選別が行われる。輸送小胞は[[細胞骨格]]に沿って特定の受け手オルガネラ(あるいは細胞膜)まで運ばれ、受け手のオルガネラと選択的に結合して膜融合が起こり内腔成分と膜成分の輸送が完了する(図1)<ref><pubmed>7969419</pubmed></ref>。従って、小胞輸送は膜融合型輸送とみなすこともできる。  
 小胞輸送は非常に多様性に富む現象であるが、基本的には図1に示す一連のプロセスにより成り立っている。まず、送り手のオルガネラの膜の一部が[[出芽]](budding)して、根本で切り取られて[[輸送小胞]](transport vesicle)となる。その際、輸送小胞に入る内腔成分と膜成分の選別が行われる。輸送小胞は[[細胞骨格]]に沿って特定の受け手オルガネラ(あるいは細胞膜)まで運ばれ、受け手のオルガネラと選択的に結合して膜融合が起こり内腔成分と膜成分の輸送が完了する(図1)<ref><pubmed>7969419</pubmed></ref>。従って、小胞輸送は膜融合型輸送とみなすこともできる。  
37行目: 37行目:
 神経細胞における極性輸送の分子機構に関する詳細は未解明の部分も多いが、近年その一端が解明されつつある。一例を挙げると、輸送小胞の[[微小管]]上の移動を司る[[モータータンパク質]]・[[キネシン]]ファミリー分子のうち、軸索特異的な輸送に関与する[[KIF1A]]は[[シナプトタグミン]]1、[[Rab|Rab3]]、[[シナプトフィジン]]といったシナプス小胞の構成因子を輸送する<ref><pubmed>7539720 </pubmed></ref>。一方、[[KIF17]]はNMDA型グルタミン酸受容体のサブユニットである[[NR2B]]を樹状突起へと輸送する<ref><pubmed>10846156</pubmed></ref>。
 神経細胞における極性輸送の分子機構に関する詳細は未解明の部分も多いが、近年その一端が解明されつつある。一例を挙げると、輸送小胞の[[微小管]]上の移動を司る[[モータータンパク質]]・[[キネシン]]ファミリー分子のうち、軸索特異的な輸送に関与する[[KIF1A]]は[[シナプトタグミン]]1、[[Rab|Rab3]]、[[シナプトフィジン]]といったシナプス小胞の構成因子を輸送する<ref><pubmed>7539720 </pubmed></ref>。一方、[[KIF17]]はNMDA型グルタミン酸受容体のサブユニットである[[NR2B]]を樹状突起へと輸送する<ref><pubmed>10846156</pubmed></ref>。


 細胞体との境界に位置する軸索の根元には[[アクチン]]線維が高密度に存在している[[軸索小丘]](axon initial segment, AIS)と呼ばれる領域があり、ここでキネシン分子依存的に軸索に輸送される分子と樹状突起へ輸送される分子の選択が行われるという説が提唱されている<ref><pubmed>19268344 </pubmed></ref>。また、[[クラスリン]]被覆小胞形成の[[アダプタータンパク質]]であるAP複合体ファミリーの1つ[[AP-4]]が、AMPA型グルタミン酸受容体のサブユニットであるGluR1およびGluR2の樹状突起への選択的輸送に関与することが明らかになっている<ref><pubmed>18341993 </pubmed></ref>。さらに、メンブレントラフィックの普遍的制御因子である[[低分子量Gタンパク質]][[Rab]]ファミリーの幾つかが、軸索あるいは樹状突起特異的に局在することが最近報告され、これらの分子の極性輸送への関与が示唆されている<ref><pubmed>22291024 </pubmed></ref>。
 細胞体との境界に位置する軸索の根元には[[アクチン]]線維が高密度に存在している[[軸索小丘]](axon initial segment, AIS)と呼ばれる領域があり、ここでキネシン分子依存的に軸索に輸送される分子と樹状突起へ輸送される分子の選択が行われるという説が提唱されている<ref><pubmed>19268344 </pubmed></ref>。また、[[クラスリン]]被覆小胞形成の[[アダプタータンパク質]]であるAP複合体ファミリーの1つ[[AP-4]]が、AMPA型グルタミン酸受容体のサブユニットであるGluR1およびGluR2の樹状突起への選択的輸送に関与することが明らかになっている<ref><pubmed>18341993 </pubmed></ref>。さらに、小胞輸送の普遍的制御因子である[[低分子量Gタンパク質]][[Rab]]ファミリーの幾つかが、軸索あるいは樹状突起特異的に局在することが最近報告され、これらの分子の極性輸送への関与が示唆されている<ref><pubmed>22291024 </pubmed></ref>。


==関連項目==
==関連項目==