「トポグラフィックマッピング」の版間の差分

33行目: 33行目:


 [[wikipedia:ja:チュービンゲン|チュービンゲン]]の[[wikipedia:de:Friedrich Bonhoeffer|Friedrich Bonhoeffer]]のグループは生化学的に視蓋での物質的基盤を明らかにすべく以下の様な実験を行った。彼らは、もし、視蓋に前後軸で濃度勾配を呈して発現している物質があってそれが耳側と鼻側の網膜神経節細胞の軸索のターゲッティングに重要であるならば、視蓋の前側と後側から調整した膜画分に対する耳側と鼻側の網膜神経節細胞の軸索の反応が変わるであろうと考え、これらの膜画分をインビトロでの基質としてストライプ状に配置した(ストライプアッセイ)。その上で網膜の神経節細胞を培養すると、耳側の細胞の軸索は前側から調整した膜画分の上を好んで成長するのに対して、鼻側の細胞の軸索は前側と後側からの画分で差を示さない事、そして、前側と後側のストライプをそれぞれ熱処理することによって、耳側の軸索は特に前側の膜画分を好むわけではなく、実は後側の膜画分を避ける事が示された(図3)。この事は視蓋の後側に高く前側に低く発現されている物質があり、それが耳側で強く発現し鼻側で弱く発現する分子によって認識される事によって網膜神経節細胞の軸索の視蓋内での位置が決まるという事を示唆する(図2)<ref><pubmed>3503693</pubmed></ref><ref><pubmed>3503703</pubmed></ref>。 このアッセイを利用してBonhoefferのグループは1990年に生化学的にニワトリの視蓋の後側に発現しているトポグラフィックマッピングに関与している分子を精製した<ref><pubmed>2171592</pubmed></ref>。RAGSと呼ばれた25kDaのこの分子はPI-PLC処理によって膜から外れることから[[GPIリンカー|GPI結合性]]の膜結合タンパク質であることがわかっていた。
 [[wikipedia:ja:チュービンゲン|チュービンゲン]]の[[wikipedia:de:Friedrich Bonhoeffer|Friedrich Bonhoeffer]]のグループは生化学的に視蓋での物質的基盤を明らかにすべく以下の様な実験を行った。彼らは、もし、視蓋に前後軸で濃度勾配を呈して発現している物質があってそれが耳側と鼻側の網膜神経節細胞の軸索のターゲッティングに重要であるならば、視蓋の前側と後側から調整した膜画分に対する耳側と鼻側の網膜神経節細胞の軸索の反応が変わるであろうと考え、これらの膜画分をインビトロでの基質としてストライプ状に配置した(ストライプアッセイ)。その上で網膜の神経節細胞を培養すると、耳側の細胞の軸索は前側から調整した膜画分の上を好んで成長するのに対して、鼻側の細胞の軸索は前側と後側からの画分で差を示さない事、そして、前側と後側のストライプをそれぞれ熱処理することによって、耳側の軸索は特に前側の膜画分を好むわけではなく、実は後側の膜画分を避ける事が示された(図3)。この事は視蓋の後側に高く前側に低く発現されている物質があり、それが耳側で強く発現し鼻側で弱く発現する分子によって認識される事によって網膜神経節細胞の軸索の視蓋内での位置が決まるという事を示唆する(図2)<ref><pubmed>3503693</pubmed></ref><ref><pubmed>3503703</pubmed></ref>。 このアッセイを利用してBonhoefferのグループは1990年に生化学的にニワトリの視蓋の後側に発現しているトポグラフィックマッピングに関与している分子を精製した<ref><pubmed>2171592</pubmed></ref>。RAGSと呼ばれた25kDaのこの分子はPI-PLC処理によって膜から外れることから[[GPIリンカー|GPI結合性]]の膜結合タンパク質であることがわかっていた。
===クローニングによる分子同定===


 その後、彼のグループのUwe Drescherらが遺伝子クローニングを含めて更なる分子の同定を試みていた。その頃、ファミリーの非常に多い新しい[[チロシンキナーゼ]]分子(後にEphとよばれる)が同定され、それについての研究が様々なグループで行われていた。中でも[[wikipedia:Regeneron|レジェネロン]]のGeorge Yancopoulosのグループ(Nick Galeら)はこのキナーゼ(Ephにあたる)のファミリーの同定とそのリガンド(ephrinにあたる)の解明を発現クローニングの手法を用いて精力的に行っていた。一方Philip Lederの弟子にあたるJohn Flanaganもハーバードに自分のラボを持った頃で、プロジェクトの一つとして[[Mek4]]([[EphA3]]にあたる)と[[Sek]]([[EphA4]]にあたる)とよばれる上記の[[キナーゼ]]ファミリーに対する[[リガンド]]の発現クローニングを行っていた。それで1994年にとれてきた分子が[[ELF-1]]([[ephrinA2]]にあたる)で、この分子はGPI結合性の膜結合型のタンパク質であることがわかっていた<ref><pubmed>7522971</pubmed></ref><ref><pubmed>3503703</pubmed></ref>。その解析の途中でMek4とELF-1がニワトリ胚の網膜と視蓋で濃度勾配を呈して発現しており、しかもその勾配が相補的であることに気がついた彼のグループは1995年にこのEphA3-ephrinA2がBonhoefferのグループが解析を行ってきたSperryのchemoaffnity theoryを担う分子メカニズムであるという論文を発表した<ref><pubmed>3503693</pubmed></ref><ref><pubmed>7634327</pubmed></ref>。その論文はDrescherらのRAGSがephrinAのグループに属する分子(ephrinA5にあたる)であるという論文と同時に発表されている<ref><pubmed>3503693</pubmed></ref><ref><pubmed>7634326</pubmed></ref>。その後、彼ら以外にも様々なグループ(例えばRudiger KleinやDennis O'learyら)が参画しニワトリだけでなく[[マウス]]でもこのEph-ephrinを介したメカニズムが視覚系におけるトポグラフィックマッピングに働いていることが証明された(詳しくは[[エフリン]]、[[Eph受容体]]の項を参照されたい)。
 その後、彼のグループのUwe Drescherらが遺伝子クローニングを含めて更なる分子の同定を試みていた。その頃、ファミリーの非常に多い新しい[[チロシンキナーゼ]]分子(後にEphとよばれる)が同定され、それについての研究が様々なグループで行われていた。中でも[[wikipedia:Regeneron|レジェネロン]]のGeorge Yancopoulosのグループ(Nick Galeら)はこのキナーゼ(Ephにあたる)のファミリーの同定とそのリガンド(ephrinにあたる)の解明を発現クローニングの手法を用いて精力的に行っていた。一方Philip Lederの弟子にあたるJohn Flanaganもハーバードに自分のラボを持った頃で、プロジェクトの一つとして[[Mek4]]([[EphA3]]にあたる)と[[Sek]]([[EphA4]]にあたる)とよばれる上記の[[キナーゼ]]ファミリーに対する[[リガンド]]の発現クローニングを行っていた。それで1994年にとれてきた分子が[[ELF-1]]([[ephrinA2]]にあたる)で、この分子はGPI結合性の膜結合型のタンパク質であることがわかっていた<ref><pubmed>7522971</pubmed></ref><ref><pubmed>3503703</pubmed></ref>。その解析の途中でMek4とELF-1がニワトリ胚の網膜と視蓋で濃度勾配を呈して発現しており、しかもその勾配が相補的であることに気がついた彼のグループは1995年にこのEphA3-ephrinA2がBonhoefferのグループが解析を行ってきたSperryのchemoaffnity theoryを担う分子メカニズムであるという論文を発表した<ref><pubmed>3503693</pubmed></ref><ref><pubmed>7634327</pubmed></ref>。その論文はDrescherらのRAGSがephrinAのグループに属する分子(ephrinA5にあたる)であるという論文と同時に発表されている<ref><pubmed>3503693</pubmed></ref><ref><pubmed>7634326</pubmed></ref>。その後、彼ら以外にも様々なグループ(例えばRudiger KleinやDennis O'learyら)が参画しニワトリだけでなく[[マウス]]でもこのEph-ephrinを介したメカニズムが視覚系におけるトポグラフィックマッピングに働いていることが証明された(詳しくは[[エフリン]]、[[Eph受容体]]の項を参照されたい)。