「ホスファチジルイノシトール」の版間の差分

編集の要約なし
編集の要約なし
1行目: 1行目:
英語名:phosphatidylinositol 英略語:PI, PtdIns
同義語:イノシトールリン酸
 ホスファチジルイノシトール(ホスホイノシタイド)は[[wikipedia:ja:細胞性粘菌|細胞性粘菌]]から[[wikipedia:ja:哺乳類|哺乳類]]にいたるまで広く存在する[[wikipedia:ja:リン脂質|リン脂質]]である。ホスファチジルイノシトールは7種類の[[wikipedia:ja:イノシトール|イノシトール]]環を持つリン脂質の総称であり、[[wikipedia:ja:細胞膜|細胞膜]]、[[wikipedia:ja:ゴルジ体|ゴルジ体]]膜、[[wikipedia:ja:エンドソーム|エンドソーム]]など細胞膜の構成成分である。シグナル伝達の[[セカンドメッセンジャー]]産生を介してシグナル伝達を行うのに加えて、多くのタンパク質と結合して、これらのタンパク質を膜に局在させる働きを持つ。ホスファチジルイノシトールは[[キナーゼ]]や[[ホスファターゼ]]によって精巧な代謝制御を受けており、これは細胞増殖、[[細胞内物質輸送]]、[[細胞骨格]]制御に必須である。また、この代謝異常は[[wikipedia:ja:悪性腫瘍|癌]]や[[wikipedia:ja:糖尿病|糖尿病]]など多くの疾患の原因となる。
{{Chembox | verifiedrevid = 409517204 | ImageFile = Phosphatidylinositol.png | ImageSize = | IUPACName = | OtherNames = PI, PtdIns | Section1 = {{Chembox Identifiers | CASNo_Ref = {{cascite|correct|??}} | CASNo = | PubChem = | SMILES = }} | Section2 = {{Chembox Properties | Formula = C<sub>47</sub>H<sub>83</sub>O<sub>13</sub>P | MolarMass = 886.56 g/mol, neutral with fatty acid composition - 18:0, 20:4 | Appearance = | Density = | MeltingPt = | BoilingPt = | Solubility = }} | Section3 = {{Chembox Hazards | MainHazards = | FlashPt = | Autoignition = }} }} {{TOC limit|limit=2}}  
{{Chembox | verifiedrevid = 409517204 | ImageFile = Phosphatidylinositol.png | ImageSize = | IUPACName = | OtherNames = PI, PtdIns | Section1 = {{Chembox Identifiers | CASNo_Ref = {{cascite|correct|??}} | CASNo = | PubChem = | SMILES = }} | Section2 = {{Chembox Properties | Formula = C<sub>47</sub>H<sub>83</sub>O<sub>13</sub>P | MolarMass = 886.56 g/mol, neutral with fatty acid composition - 18:0, 20:4 | Appearance = | Density = | MeltingPt = | BoilingPt = | Solubility = }} | Section3 = {{Chembox Hazards | MainHazards = | FlashPt = | Autoignition = }} }} {{TOC limit|limit=2}}  


<br>


 ホスファチジルイノシトール(ホスホイノシタイド)は細胞性粘菌から哺乳類にいたるまで広く存在するリン脂質である。ホスファチジルイノシトールは7種類のイノシトール環を持つリン脂質の総称であり、細胞膜、ゴルジ体膜、エンドソームなど細胞膜の構成成分である。シグナル伝達のセカンドメッセンジャー産生を介してシグナル伝達を行うのに加えて、多くのタンパク質と結合して、これらのタンパク質を膜に局在させる働きを持つ。ホスファチジルイノシトールはキナーゼやホスファターゼによって精巧な代謝制御を受けており、これは細胞増殖、細胞内物質輸送、細胞骨格制御に必須である。また、この代謝異常はがんや糖尿病など多くの疾患の原因となる。
<br>


== '''構造と種類'''  ==
== '''構造と種類'''  ==


 ホスファチジルイノシトールは正確には1,2-ジアシル-sn-グリセロ-3-ホスホリル-1-myo-イノシトールという名称の脂質であり、[[wikipedia:ja:脂肪酸|脂肪酸]]部分と[[wikipedia:ja:イノシトール|イノシトール]]環部分からなる。脂肪酸部分は二つの[[wikipedia:ja:アシル基|アシル基]]からなり、組成は1-[[wikipedia:ja:ステアリン酸|ステアロイル]]-2-[[wikipedia:ja:アラキドン酸|アラキドノイル]]型が多い。
 ホスファチジルイノシトールは正確には1,2-ジアシル-sn-グリセロ-3-ホスホリル-1-myo-イノシトールという名称の脂質であり、[[wikipedia:ja:脂肪酸|脂肪酸]]部分とイノシトール環部分からなる。脂肪酸部分は二つの[[wikipedia:ja:アシル基|アシル基]]からなり、組成は1-[[wikipedia:ja:ステアリン酸|ステアロイル]]-2-[[wikipedia:ja:アラキドン酸|アラキドノイル]]型が多い。
 ホスファチジルイノシトールのイノシトール環の1-3個の[[wikipedia:ja:ヒドロキシル基|ヒドロキシル基]]に[[wikipedia:ja:リン酸|リン酸]]基が[[wikipedia:ja:エステル|エステル]]結合した分子(ホスホイノシタイド)も生体内には見いだされる。従って、ほ乳類の含有するホスホイノシタイドは、リン酸機の個数によって、PI(ホスファチジルイノシトール)、PIP(ホスファチジルイノシトール一リン酸)、PIP<sub>2</sub>(ホスファチジルイノシトール二リン酸)とPIP<sub>3</sub>(ホスファチジルイノシトール三リン酸)から成り、このうちPIP、PIP<sub>2</sub>とPIP<sub>3</sub>のことを総称して(ポリ)ホスホイノシチドと呼ぶ。これらはそのリン酸基に位置によってさらに分類される。PIPには[[PI(3)P]](ホスファチジルイノシトール-3-一リン酸)、[[PI(4)P]](ホスファチジルイノシトール-4-一リン酸)、[[PI(5)P]](ホスファチジルイノシトール-5-一リン酸)の3種類が、PIP<sub>2</sub>には[[PI(3,4)P2|PI(3,4)P<sub>2</sub>]](ホスファチジルイノシトール-3,4-二リン酸)、[[PI(3,5)P2|PI(3,5)P<sub>2</sub>]](ホスファチジルイノシトール-3,5-二リン酸)[[PI(4,5)P2|PI(4,5)P<sub>2</sub>]](ホスファチジルイノシトール-4,5-ビスリン酸)の3種類が存在する。[[PI(3,4,5)P3|PI(3,4,5)P<sub>3</sub>]]はイノシトール環の3、4、5位の3カ所にリン酸基が入ったもので1種類のみ存在する(図1)。[[Image:PI_Fig1.jpg|thumb|right|250px]]
 ホスファチジルイノシトールのイノシトール環の1-3個の[[wikipedia:ja:ヒドロキシル基|ヒドロキシル基]]に[[wikipedia:ja:リン酸|リン酸]]基が[[wikipedia:ja:エステル|エステル]]結合した分子(ホスホイノシタイド)も生体内には見いだされる。ほ乳類の含有するホスホイノシタイドは、リン酸機の個数によって、PI(ホスファチジルイノシトール)、PIP(ホスファチジルイノシトール一リン酸)、PIP<sub>2</sub>(ホスファチジルイノシトール二リン酸)とPIP<sub>3</sub>(ホスファチジルイノシトール三リン酸)から成り、このうちPIP、PIP<sub>2</sub>とPIP<sub>3</sub>のことを総称して(ポリ)ホスホイノシチドと呼ぶ。ホスファチジルイノシトールというと狭義にはリン酸化されていないPIのみを指すが、広義にはリン酸化されたホスホイノシタイドも含める事がある。
 ホスファチジルイノシトールが見つかって60年以上が経過しているが、1988年のCantleyによる[[PI3キナーゼ]]の同定によって、現在は7種類のホスホイノシタイドが見つかっている<ref name="ref1"><pubmed>2467744</pubmed></ref>。ホスホイノシタイドは全リン脂質量の0.1%〜1%を占めているが、これはホスファチジルイノシトールが5%〜10%を占めるのに比べると非常に少ない。 特にホスホイノシチドには様々な生理活性が知られており、本項目ではそれらを中心に解説する。<br>  
 ホスホイノシタイドはそのリン酸基に位置によってさらに分類される。PIPには[[PI(3)P]](ホスファチジルイノシトール-3-一リン酸)、[[PI(4)P]](ホスファチジルイノシトール-4-一リン酸)、[[PI(5)P]](ホスファチジルイノシトール-5-一リン酸)の3種類が、PIP<sub>2</sub>には[[PI(3,4)P2|PI(3,4)P<sub>2</sub>]](ホスファチジルイノシトール-3,4-二リン酸)、[[PI(3,5)P2|PI(3,5)P<sub>2</sub>]](ホスファチジルイノシトール-3,5-二リン酸)[[PI(4,5)P2|PI(4,5)P<sub>2</sub>]](ホスファチジルイノシトール-4,5-ビスリン酸)の3種類が存在する。[[PI(3,4,5)P3|PI(3,4,5)P<sub>3</sub>]]はイノシトール環の3、4、5位の3カ所にリン酸基が入ったもので1種類のみ存在する(図1)。[[Image:PI_Fig1.jpg|thumb|right|400px|'''図1 ホスファチジルイノシトール(ホスホイノシタイド)''']]
 ホスファチジルイノシトールが見つかって60年以上が経過しているが、1988年のCantleyによる[[PI3キナーゼ]]の同定によって、現在は7種類のホスホイノシタイドが見つかっている<ref name="ref1"><pubmed>2467744</pubmed></ref>。ホスホイノシタイドは全リン脂質量の0.1%〜1%を占めているが、これはホスファチジルイノシトールが5%〜10%を占めるのに比べると非常に少ない。  
 特にホスホイノシチドには様々な生理活性が知られており、本項目ではそれを含めて解説する。<br>  




17行目: 21行目:


 ホスファチジルイノシトールの機能は大きく四つに分類される<ref name="ref2"><pubmed>19675354</pubmed></ref>。
 ホスファチジルイノシトールの機能は大きく四つに分類される<ref name="ref2"><pubmed>19675354</pubmed></ref>。
<br>


=== '''セカンドメッセンジャー産生の基質'''  ===
=== '''セカンドメッセンジャー産生の基質'''  ===


 細胞内情報伝達経路における[[セカンドメッセンジャー]]物質産生の基質としての機能する。PI(4,5)P<sub>2</sub>から[[フォスフォリパーゼC]] (PLC)によって[[ジアシルグリセロール]] (DG)と[[イノシトール3リン酸]] (IP<sub>3</sub>)が産生され、小胞体からのカルシウム放出を促進するのがこの例に当たる。
 細胞内情報伝達経路における[[セカンドメッセンジャー]]物質産生の基質としての機能する。PI(4,5)P<sub>2</sub>から[[フォスフォリパーゼC]] (PLC)によって[[ジアシルグリセロール]] (DG)と[[イノシトール3リン酸]] (IP<sub>3</sub>)が産生され、小胞体からのカルシウム放出を促進するのがこの例に当たる。
<br>


=== '''物質輸送と膜変形'''  ===
=== '''物質輸送と膜変形'''  ===


 細胞内の物質輸送の調節に関わる<ref name="ref3"><pubmed>18784754</pubmed></ref>。ホスファチジルイノシトールは、種類によって局在がきわめて限られている。細胞内小胞輸送に直接関与する多くの分子がホスファチジルイノシトール結合ドメインを介して、エンドソームやゴルジ体など細胞の特定のコンパートメントに集まる結果、小胞輸送が活発になると考えられている。これらの分子の中には細胞膜や小胞膜の大きさや曲率を認識する機能を持ち、膜の形態そのものを変形させる活性を持っている場合も多い<ref name="ref4"><pubmed>19963073</pubmed></ref><ref name="ref5"><pubmed>19481110</pubmed></ref>。これが細胞内の[[膜輸送]]において重要な機能である。
 細胞内の物質輸送の調節に関わる<ref name="ref3"><pubmed>18784754</pubmed></ref>。ホスファチジルイノシトールは、種類によって局在がきわめて限られている。細胞内小胞輸送に直接関与する多くの分子がホスファチジルイノシトール結合ドメインを介して、エンドソームやゴルジ体など細胞の特定のコンパートメントに集まる結果、小胞輸送が活発になると考えられている。これらの分子の中には細胞膜や小胞膜の大きさや曲率を認識する機能を持ち、膜の形態そのものを変形させる活性を持っている場合も多い<ref name="ref4"><pubmed>19963073</pubmed></ref><ref name="ref5"><pubmed>19481110</pubmed></ref>。これが細胞内の[[膜輸送]]において重要な機能である。
<br>


=== '''細胞骨格制御'''  ===
=== '''細胞骨格制御'''  ===


 ホスファチジルイノシトールはアクチニンやゲルソリンなどのアクチン細胞骨格制御分子と静電的に結合し、アクチン重合をコントロールしていることが知られている。また、Rac1-GEFであるTiam1と結合し、ラメリポディア構造の形成を促進する作用を持つ<ref name="ref6"><pubmed>20086078</pubmed></ref>。
 ホスファチジルイノシトールはアクチニンやゲルソリンなどのアクチン細胞骨格制御分子と静電的に結合し、アクチン重合をコントロールしていることが知られている。また、Rac1-GEFであるTiam1と結合し、ラメリポディア構造の形成を促進する作用を持つ<ref name="ref6"><pubmed>20086078</pubmed></ref>。
<br>


=== '''細胞内シグナル伝達経路の制御'''  ===
=== '''細胞内シグナル伝達経路の制御'''  ===
42行目: 38行目:
 細胞内シグナル伝達経路の制御に関わる。[[Akt]]や[[Btk]]など多くのシグナル伝達分子や[[タンパクリン酸化酵素]]が脂質結合ドメインを持っており、ホスファチジルイノシトールとの結合によってキナーゼ活性が制御されている例も見られる。後述の[[PI3キナーゼ]]シグナル伝達経路は[[アポトーシス]]の抑制やタンパク質合成などの細胞の生存に不可欠なものであることが明らかとなっている<ref name="ref7"><pubmed>16847462</pubmed></ref>。  
 細胞内シグナル伝達経路の制御に関わる。[[Akt]]や[[Btk]]など多くのシグナル伝達分子や[[タンパクリン酸化酵素]]が脂質結合ドメインを持っており、ホスファチジルイノシトールとの結合によってキナーゼ活性が制御されている例も見られる。後述の[[PI3キナーゼ]]シグナル伝達経路は[[アポトーシス]]の抑制やタンパク質合成などの細胞の生存に不可欠なものであることが明らかとなっている<ref name="ref7"><pubmed>16847462</pubmed></ref>。  


 さらに、ホスファチジルイノシトールの代謝異常は多くの重大かつ重篤な疾患と密接に関連していることも明らかとなっている。PI(3,4,5)P<sub>3</sub>の代謝異常は[[wikipedia:ja:悪性腫瘍|癌]]や[[wikipedia:ja:糖尿病|糖尿病]]の患者に多く認められている。これは癌細胞の増殖や浸潤転移、[[インスリン]]による[[wikipedia:ja:骨格筋|骨格筋]]や[[wikipedia:ja:脂肪細胞|脂肪細胞]]への糖取込みにおいてPI(3,4,5)P<sub>3</sub>が必要であることに起因している。また、PI(4,5)P<sub>2</sub>の代謝異常がダウン症や[[Lowe症候群]]などの遺伝性疾患患者に認められている<ref name="ref8"><pubmed>1919664</pubmed></ref>。
 さらに、ホスファチジルイノシトールの代謝異常は多くの重大かつ重篤な疾患と密接に関連していることも明らかとなっている。PI(3,4,5)P<sub>3</sub>の代謝異常は癌や糖尿病の患者に多く認められている。これは癌細胞の増殖や浸潤転移、[[インスリン]]による[[wikipedia:ja:骨格筋|骨格筋]]や[[wikipedia:ja:脂肪細胞|脂肪細胞]]への糖取込みにおいてPI(3,4,5)P<sub>3</sub>が必要であることに起因している。また、PI(4,5)P<sub>2</sub>の代謝異常がダウン症や[[Lowe症候群]]などの遺伝性疾患患者に認められている<ref name="ref8"><pubmed>1919664</pubmed></ref>。


<br>  
<br>  
48行目: 44行目:
== '''個々のホスホイノシチドの生合成経路と機能'''  ==
== '''個々のホスホイノシチドの生合成経路と機能'''  ==


7種類のホスホイノシチドはそれぞれに特異的な機能を有している<ref name="ref9"><pubmed>17827706</pubmed></ref>。
 7種類のホスホイノシチドはそれぞれに特異的な機能を有している<ref name="ref9"><pubmed>17827706</pubmed></ref>。


=== '''PI(3)P'''  ===
=== '''PI(3)P'''  ===
125行目: 121行目:
== '''ポリホスホイノシチド結合ドメイン'''  ==
== '''ポリホスホイノシチド結合ドメイン'''  ==


 ポリホスホイノシチド結合分子は現在300以上の分子で見つかっており、ポリホスホイノシチド結合ドメインとしてPHドメインやBARドメインなどが同定されている(表1)<ref name="ref15"><pubmed>16754321</pubmed></ref>[[Image:Inositide Table1.jpg|thumb|right|250px]]。  
 ポリホスホイノシチド結合分子は現在300以上の分子で見つかっており、ポリホスホイノシチド結合ドメインとしてPHドメインや[[wikipedia:BAR domain|BARドメイン]]などが同定されている(表1)<ref name="ref15"><pubmed>16754321</pubmed></ref>[[Image:Inositide Table1.jpg|thumb|right|250px]]。  


 これらの分子がポリホスホイノシチドと結合する様式は、静電的結合および脂質結合ドメインと脂質の特異的結合の二つに分類される。  
 これらの分子がポリホスホイノシチドと結合する様式は、静電的結合および脂質結合ドメインと脂質の特異的結合の二つに分類される。  


 静電的結合はポリホスホイノシチドが持つ負の電荷と[[wikipedia:ja:アルギニン|アルギニン]]、[[wikipedia:ja:リジン|リジン]]などの塩基性アミノ酸が持つ正の電荷との静電気的な相互作用によるものである。例えば[[wikipedia:BAR domain|BARドメイン]]は両親媒性ヘリックス構造をとり、片側に塩基性アミノ酸がかたよって配向しているが、この部分に負の電荷を持ったポリホスホイノシタイドが結合することが明らかとなっている。このBARドメインは膜の曲率を認識していることから、細胞膜のある特定の部分にのみ局在できることも明らかになっている。また、細胞骨格制御分子である[[アクチニン]]とPI(4,5)P<sub>2</sub>との相互作用などもこれにあてはまる。  
 静電的結合はポリホスホイノシチドが持つ負の電荷と[[wikipedia:ja:アルギニン|アルギニン]]、[[wikipedia:ja:リジン|リジン]]などの塩基性アミノ酸が持つ正の電荷との静電気的な相互作用によるものである。例えばBARドメインは両親媒性ヘリックス構造をとり、片側に塩基性アミノ酸がかたよって配向しているが、この部分に負の電荷を持ったポリホスホイノシタイドが結合することが明らかとなっている。このBARドメインは膜の曲率を認識していることから、細胞膜のある特定の部分にのみ局在できることも明らかになっている。また、細胞骨格制御分子である[[アクチニン]]とPI(4,5)P<sub>2</sub>との相互作用などもこれにあてはまる。  


 一方、ポリホスホイノシチドに特異的に結合するドメインはPHドメインで最初に同定され、現在では100種類以上の分子がなんらかの脂質特異的結合ドメインを持つことが明らかとなっている。しかし、同じPHドメインファミリーでもポリホスホイノシチドに対する特異性は異なる場合も多い。例えば[[wikipedia:Autophagy-related protein 101|GRP1]]のPHドメインはPI(3,4,5)P<sub>3</sub>に特異的に結合するが、一方[[wikipedia:Oxysterol binding protein|OSBP1]]のPHドメインはPI(4)Pにのみ結合する。ドメイン内のわずかなアミノ酸の違いがこのような結合特異性の違いを産むことが分かっている。そのドメイン内には塩基性のアミノ酸が並んでいる部分があり、そこで特定のポリホスホイノシチドと結合していることが多い。ドメイン全体として脂肪酸部分を含むポリホスホイノシチドがちょうど入り込むポケットのような構造をとっている。この構造がドメインを介した結合が静電的結合より特異的な原因である。  
 一方、ポリホスホイノシチドに特異的に結合するドメインはPHドメインで最初に同定され、現在では100種類以上の分子がなんらかの脂質特異的結合ドメインを持つことが明らかとなっている。しかし、同じPHドメインファミリーでもポリホスホイノシチドに対する特異性は異なる場合も多い。例えば[[wikipedia:Autophagy-related protein 101|GRP1]]のPHドメインはPI(3,4,5)P<sub>3</sub>に特異的に結合するが、一方[[wikipedia:Oxysterol binding protein|OSBP1]]のPHドメインはPI(4)Pにのみ結合する。ドメイン内のわずかなアミノ酸の違いがこのような結合特異性の違いを産むことが分かっている。そのドメイン内には塩基性のアミノ酸が並んでいる部分があり、そこで特定のポリホスホイノシチドと結合していることが多い。ドメイン全体として脂肪酸部分を含むポリホスホイノシチドがちょうど入り込むポケットのような構造をとっている。この構造がドメインを介した結合が静電的結合より特異的な原因である。  
135行目: 131行目:


== '''ホスファチジルイノシトールキナーゼ'''  ==
== '''ホスファチジルイノシトールキナーゼ'''  ==
 ホスファチジルイノシトールのリン酸化酵素の総称。イノシトール環へのリン酸化の部位によって3-キナーゼ、4-キナーゼ、5-キナーゼに分類され、全部で約15種類存在する(図2)。それぞれの分子が細胞内の特定のコンパートメントでホスファチジルイノシトールの産生を行っている。 [[Image:PI_Fig2.jpg|thumb|right|400px|'''図2 ホスファチジルイノシトールキナーゼ''']]
=== '''ホスファチジルイノシトール3キナーゼとPI3キナーゼシグナル伝達経路'''  ===
 PI 3キナーゼは基質特異性によって3種類に分類される。
 PI 3キナーゼの中でもClass I PI3キナーゼはPI(4,5)P<sub>2</sub>からPI(3,4,5)P<sub>3</sub>を産生する酵素である。調節サブユニット(p85やp101など)と活性サブユニット(p110)の二つのサブユニットから構成される。[[wikipedia:ja:上皮成長因子|上皮成長因子]](EGF)や[[wikipedia:ja:血小板由来成長因子|血小板由来成長因子]](PDGF)などの増殖因子や[[wikipedia:ja:リゾホスファチジン酸|リゾホスファチジン酸]]などによって[[受容体型チロシンキナーゼ]]や[[Gタンパク質共役型受容体]]が活性化されると、調節サブユニットが[[チロシンリン酸化]]された受容体に結合し、構造変化を起こすことによって活性サブユニットと結合できるようになる。刺激依存的に活性化されたPI3キナーゼは細胞膜においてPI(4,5)P<sub>2</sub>をリン酸化し、PI(3,4,5)P<sub>3</sub>を産生させる<ref name="ref3" />。産生されたPI(3,4,5)P<sub>3</sub>はAktのPHドメインと結合し、Aktを細胞膜へ局在させる。その結果、AktはPDK1や[[MTOR]]C2によってリン酸化されて、その[[タンパク質リン酸化酵素]]活性が活性化される。
 Aktの下流には[[wikipedia:P70-S6 Kinase 1|p70 S6キナーゼ]],[[wikipedia:ja:GSK-3|GSK3]],[[wikipedia:ja:FOXO1A|FoxO]]などタンパク質合成を促進する分子、[[wikipedia:ja:糖代謝|糖代謝]]、脂質代謝やアポトーシス抑制を制御する分子が存在している。従って、PI(3,4,5)P<sub>3</sub>産生やPI3キナーゼシグナル伝達経路に異常がある場合、これらの基本的生命現象の劇的な変化に伴い、さまざまな疾患を引き起こす。骨格筋や脂肪組織におけるインスリン産生やインスリン抵抗性の惹起はPI3キナーゼシグナルの低下を引き起こし、血中からの糖取込みの欠失の結果、[[wikipedia:ja:高血糖症|高血糖症]]、糖尿病を引き起こす。また、PI3キナーゼの亢進による過増殖は細胞のがん化を引き起こす。実際、がん細胞では90%以上の割合でPI3キナーゼシグナル分子に変異が認められる。特に、PI(3,4,5)P<sub>3</sub>ホスファターゼPTENには多くの変異が認められることが明らかとなっている。そのため、PI3キナーゼシグナル伝達経路を調節する分子はがんや糖尿病治療の創薬における標的分子としての期待が集まっている<ref name="ref7" /><ref name="ref16"><pubmed>17827708</pubmed></ref>。


 ホスファチジルイノシトールのリン酸化酵素の総称。イノシトール環へのリン酸化の部位によって3-キナーゼ、4-キナーゼ、5-キナーゼに分類され、全部で約15種類存在する(図2)。[[Image:PI_Fig2.jpg|thumb|right|250px]]
 Vps34(Class III PI 3キナーゼ)はPIだけを基質とする酵素で、ゴルジ体やエンドソームでPI(3)Pを産生する。哺乳類から線虫に至るまで保存されている。線虫やショウジョウバエでは、この酵素がインスリンシグナル依存的な生存や寿命をコントロールしていることが知られている。
 
 Class II PI 3キナーゼはPIとPI(4)Pから、それぞれPI(3)PとPI(3,4)P<sub>2</sub>を産生する。
 
=== '''その他のホスファチジルイノシトールキナーゼ'''  ===


 PI 4-キナーゼ(PI4K IIα,IIβ,IIIα,IIIβ)はPIの4位をリン酸化する分子でトランスゴルジでのPI4P産生を行う。  
 PI 4-キナーゼ(PI4K IIα,IIβ,IIIα,IIIβ)はPIの4位をリン酸化する分子でトランスゴルジでのPI4P産生を行う。  
145行目: 152行目:


 PIKfyveはエンドソームでPI(3)Pの5位をリン酸化してPI(3,5)P<sub>2</sub>を産生する。  
 PIKfyveはエンドソームでPI(3)Pの5位をリン酸化してPI(3,5)P<sub>2</sub>を産生する。  
 このように数多くの分子が細胞内の特定のコンパートメントでホスファチジルイノシトールの産生を行っている。
 PI 3キナーゼは基質特異性によって3種類に分類される。Vps34(Class III PI 3キナーゼ)はPIだけを基質とする酵素で、ゴルジ体やエンドソームでPI(3)Pを産生する。哺乳類から線虫に至るまで保存されている。線虫やショウジョウバエでは、この酵素がインスリンシグナル依存的な生存や寿命をコントロールしていることが知られている。Class II PI 3キナーゼはPIとPI(4)Pから、それぞれPI(3)PとPI(3,4)P<sub>2</sub>を産生する。
=== '''Class I ホスファチジルイノシトール3キナーゼとPI3キナーゼシグナル伝達経路'''  ===
 PI 3キナーゼの中でもClass I PI3キナーゼはPI(4,5)P<sub>2</sub>からPI(3,4,5)P<sub>3</sub>を産生する酵素である。調節サブユニット(p85やp101など)と活性サブユニット(p110)の二つのサブユニットから構成される。[[wikipedia:ja:上皮成長因子|上皮成長因子]](EGF)や[[wikipedia:ja:血小板由来成長因子|血小板由来成長因子]](PDGF)などの増殖因子や[[wikipedia:ja:リゾホスファチジン酸|リゾホスファチジン酸]]などによって[[受容体型チロシンキナーゼ]]や[[Gタンパク質共役型受容体]]が活性化されると、調節サブユニットが[[チロシンリン酸化]]された受容体に結合し、構造変化を起こすことによって活性サブユニットと結合できるようになる。刺激依存的に活性化されたPI3キナーゼは細胞膜においてPI(4,5)P<sub>2</sub>をリン酸化し、PI(3,4,5)P<sub>3</sub>を産生させる<ref name="ref3" />。産生されたPI(3,4,5)P<sub>3</sub>はAktのPHドメインと結合し、Aktを細胞膜へ局在させる。その結果、AktはPDK1や[[MTOR]]C2によってリン酸化されて、その[[タンパク質リン酸化酵素]]活性が活性化される。
 Aktの下流には[[wikipedia:P70-S6 Kinase 1|p70 S6キナーゼ]],[[wikipedia:ja:GSK-3|GSK3]],[[wikipedia:ja:FOXO1A|FoxO]]などタンパク質合成を促進する分子、[[wikipedia:ja:糖代謝|糖代謝]]、脂質代謝やアポトーシス抑制を制御する分子が存在している。従って、PI(3,4,5)P<sub>3</sub>産生やPI3キナーゼシグナル伝達経路に異常がある場合、これらの基本的生命現象の劇的な変化に伴い、さまざまな疾患を引き起こす。骨格筋や脂肪組織におけるインスリン産生やインスリン抵抗性の惹起はPI3キナーゼシグナルの低下を引き起こし、血中からの糖取込みの欠失の結果、[[wikipedia:ja:高血糖症|高血糖症]]、糖尿病を引き起こす。また、PI3キナーゼの亢進による過増殖は細胞のがん化を引き起こす。実際、がん細胞では90%以上の割合でPI3キナーゼシグナル分子に変異が認められる。特に、PI(3,4,5)P<sub>3</sub>ホスファターゼPTENには多くの変異が認められることが明らかとなっている。そのため、PI3キナーゼシグナル伝達経路を調節する分子はがんや糖尿病治療の創薬における標的分子としての期待が集まっている<ref name="ref7" /><ref name="ref16"><pubmed>17827708</pubmed></ref>。


== '''ホスファチジルイノシトールホスファターゼ'''  ==
== '''ホスファチジルイノシトールホスファターゼ'''  ==
[[Image:PI_Fig3.jpg|thumb|right|250px|'''図3 ホスファチジルイノシトールホスファターゼ''']]


 ホスファチジルイノシトールの脱リン酸化酵素の総称。全部で50種類以上の分子からなり、その基質特異性と脱リン酸化するリン酸基の位置によって分類される。多くのポリホスホイノシチドホスファターゼ分子が、遺伝性疾患、がん、糖尿病など重篤な疾患の原因遺伝子として知られている。ポリホスホイノシチドホスファターゼはその基質特異性と脱リン酸化部位によって分類される(図3)。[[Image:PI_Fig3.jpg|thumb|right|250px]]
 ホスファチジルイノシトールの脱リン酸化酵素の総称。全部で50種類以上の分子からなり、その基質特異性と脱リン酸化するリン酸基の位置によって分類される。多くのポリホスホイノシチドホスファターゼ分子が、遺伝性疾患、がん、糖尿病など重篤な疾患の原因遺伝子として知られている。ポリホスホイノシチドホスファターゼはその基質特異性と脱リン酸化部位によって分類される(図3)。


 通常、ポリホスホイノシチドホスファターゼが脱リン酸化するリン酸基は一ヶ所であり、3−ホスファターゼ、4−ホスファターゼ、5−ホスファターゼのいずれかに分類される。例えば、3-ホスファターゼはPI(3)P, PI(3,4)P<sub>2</sub>, PI(3,5)P<sub>2</sub>, PI(3,4,5)P<sub>3</sub>を脱リン酸化して、それぞれPI, PI(3)P, PI(4)P, PI(3,4)P<sub>2</sub>を産生する。中にはSAC1の様に、3-ホスファターゼ活性と4-ホスファターゼ活性の2種類以上の活性を同時に有するものも存在する。 さらに基質となるホスファチジルイノシトールの中でも、その基質特異性の強さは異なり、多くのポリホスホイノシチドホスファターゼはそのうち一部だけを基質とし得る。例えば、PTENはPI(3,4,5)P<sub>3</sub>の3位の脱リン酸化活性が高いため、PI(3,4,5)P<sub>3</sub>の3-ホスファターゼと呼ばれている。一方、SHIP1はPI(3,4,5)P<sub>3</sub>の5位を脱リン酸化するため、PI(3,4,5)P<sub>3</sub> 5-ホスファターゼと呼ばれる。  
 通常、ポリホスホイノシチドホスファターゼが脱リン酸化するリン酸基は一ヶ所であり、3−ホスファターゼ、4−ホスファターゼ、5−ホスファターゼのいずれかに分類される。例えば、3-ホスファターゼはPI(3)P, PI(3,4)P<sub>2</sub>, PI(3,5)P<sub>2</sub>, PI(3,4,5)P<sub>3</sub>を脱リン酸化して、それぞれPI, PI(3)P, PI(4)P, PI(3,4)P<sub>2</sub>を産生する。中にはSAC1の様に、3-ホスファターゼ活性と4-ホスファターゼ活性の2種類以上の活性を同時に有するものも存在する。 さらに基質となるホスファチジルイノシトールの中でも、その基質特異性の強さは異なり、多くのポリホスホイノシチドホスファターゼはそのうち一部だけを基質とし得る。例えば、PTENはPI(3,4,5)P<sub>3</sub>の3位の脱リン酸化活性が高いため、PI(3,4,5)P<sub>3</sub>の3-ホスファターゼと呼ばれている。一方、SHIP1はPI(3,4,5)P<sub>3</sub>の5位を脱リン酸化するため、PI(3,4,5)P<sub>3</sub> 5-ホスファターゼと呼ばれる。