104
回編集
細編集の要約なし |
細編集の要約なし |
||
24行目: | 24行目: | ||
=== ドナーとアクセプターの蛍光強度比を測定する方法 === | === ドナーとアクセプターの蛍光強度比を測定する方法 === | ||
ドナーおよびアクセプターの蛍光を取得後、ドナーとアクセプターの蛍光強度比が計算される。FRETが起きると、ドナーの蛍光強度が減少し、アクセプターの蛍光強度が増加する。現在、最も広く使用されている手法であるが、データを取得、解釈する際に注意しなければいけないポイントがある。 | |||
まず、ドナーの蛍光のアクセプターチャンネルへの漏れ込みである。これによって、SN比の減少の原因となる。改善点としては漏れ込みを極力抑える適切なバンドパスフィルターを用いることである。次に、ドナーおよびアクセプターのバックグラウンドは、FRET変化に影響を与えるため、サブトラクションすることで、より正しいFRET効率が得られる。次に、2分子間FRETで起きることであるが、ドナーとアクセプターの局在の違いは疑似FRETを生じる。リンカーで連結し1分子にすること、局在しているアクセプターの蛍光強度を計算することで修正することが可能である。 | まず、ドナーの蛍光のアクセプターチャンネルへの漏れ込みである。これによって、SN比の減少の原因となる。改善点としては漏れ込みを極力抑える適切なバンドパスフィルターを用いることである。次に、ドナーおよびアクセプターのバックグラウンドは、FRET変化に影響を与えるため、サブトラクションすることで、より正しいFRET効率が得られる。次に、2分子間FRETで起きることであるが、ドナーとアクセプターの局在の違いは疑似FRETを生じる。リンカーで連結し1分子にすること、局在しているアクセプターの蛍光強度を計算することで修正することが可能である。 | ||
=== アクセプターブリーチング法 === | |||
適切な波長によって、アクセプターを退色させることでFRETを解消することができる。この解消度合いよりFRET効率を算出する。この手法は不可逆的であるために経時的変化を追うことは困難である。 | |||
=== ドナーの蛍光寿命を測定する方法 === | === ドナーの蛍光寿命を測定する方法 === | ||
近年、データ処理速度の向上により、メガヘルツオーダーのパルス励起光によって励起された一つ一つの光子を、迅速に検出する時間相関単一光子計数法が発展してきた。励起光によって発生した一つ一つの光子の発生時間の確率分布が減衰曲線を形成するため、蛍光寿命を得ることができる。蛍光寿命は、蛍光の減衰曲線の速度定数<math>k \ </math>と逆数の関係にある。 蛍光寿命は、GFPは2.5nsec、その色彩変異体,黄色蛍光タンパク質YFPでは2.9nsec、mCherryでは1.5nsecの値を取る。FRETが起きるとドナーの蛍光寿命が減少する(図4)。Double exponetial fittingによって、FRETの起きている割合が算出できる。蛍光寿命は、蛍光強度比測定法に比べて、蛍光の漏れ込み、アクセプターとの局在の違いなどによって生じる疑似FRETを回避できる。FRETデータ取得において、より理想的であると考えられる。 | |||
=== 異方性を測定する方法 === | === 異方性を測定する方法 === | ||
一つの蛍光団のストークスシフトが小さい場合、励起スペクトルと蛍光スペクトルの重なりが大きい。このような蛍光団では、同一の蛍光団同士で、Homo-FRETが生じる。Homo-FRETは、蛍光強度および蛍光寿命は変化しないが、異方性が変わる。この原理を用いて、一般的には、分子同士のクラスターの度合いなどに応用されている。 | 一つの蛍光団のストークスシフトが小さい場合、励起スペクトルと蛍光スペクトルの重なりが大きい。このような蛍光団では、同一の蛍光団同士で、Homo-FRETが生じる。Homo-FRETは、蛍光強度および蛍光寿命は変化しないが、異方性が変わる。この原理を用いて、一般的には、分子同士のクラスターの度合いなどに応用されている。 | ||
42行目: | 41行目: | ||
<br> | <br> | ||
== プローブのデザイン == | |||
神経科学分野を始めとして、様々な細胞生物学の分野において、様々なFRETプローブが使用されている。これらのプローブを分類すると、以下のように分類される。 | |||
<br> | |||
1.プローブの分解に伴うFRETの変化を検出するプローブ | |||
この原理は、FRETプローブの最も初期に導入されたデザインである。例として、Factor Xなどのプロテアーゼによって分解される配列の両端にドナーとアクセプターを連結する。プロテアーゼによって、この配列が分解されるとドナーとアクセプターの間に起きていたFRETが解消されることによって、プロテアーゼの活性を評価する。カスパーゼなどの活性を測定するためにも使用されている。このプローブのデザインの短所としては、反応が不可逆的であるために、一つの実験系で何度も測定することが困難であることである。 | |||
<br> | |||
2.2分子間相互作用を利用したFRETプローブ | |||
興味のあるタンパク質同士の相互作用を測定する際に、この原理が用いられる。一方にドナー、他方にアクセプターを連結する。タンパク質同士が結合していないときにはFRETは起きていないが、結合することによってFRETを生じる。応用例としては蛍光寿命を基にしたGタンパク質の活性化の測定に用いられている。また、アクチンの重合度を測定するために、アクチンにドナー、アクセプターを連結して測定している例もある。距離のファクターを生かせるために、比較的大きなシグナルが得られる一方、内在性のタンパク質が反応に参加するために、その分FRET応答が減少する。ドナーとアクセプターの発現量の差によるFRETの応答の変化も問題になる。特に、アクセプターと結合しないドナーが多量に存在するとFRET応答が小さくなる。一般にアクセプターが多い系が、使用に適している。 | |||
<br> | |||
3.一分子内FRETプローブ | |||
この原理は、一分子内にドナーとアクセプターを連結し、これらの配向および距離の変化を利用する。2分子間FRETに生じるような発現量の違いやドナーとアクセプターの局在の変化によって生じるアーチファクトなどを考慮する必要がない。さらに活性に伴うタンパク質の構造変化などを利用するために、比較的容易に応答するプローブが作製できるが、ドナーとアクセプターを適切な位置に配置するなどの検討が必要である。 | |||
<br> | |||
3-1.タンパク質の構造変化を基にしたFRETプローブ | |||
興味のあるタンパク質が、活性化の際に構造変化を誘起することが知られている場合には構造変化を利用することができる。タンパク質のC末およびN末にドナーおよびアクセプターを連結する。この手法は、CaMKII、Calcinulin, raf, 膜電位測定などに用いられている。 | |||
<br> | |||
3-2.タンパク質結合に伴う構造変化を基にしたFRETプローブ | |||
ある種のタンパク質は活性化、非活性化に伴い、下流のタンパク質と結合する。このような相互作用を利用してタンパク質の活性化、非活性化を測定することができる。低分子G-proteinの活性化を測定するためにも用いられている。カルシウムFRETプローブ、カメレオンはこの原理を利用している。また、G-proteinの活性化プローブは、ドナー、アクセプター、G-protein、シグナル伝達下流の結合タンパク質の結合ドメインからなる。G-proteinがGDPからGTP結合型になり活性化すると、結合ドメインと相互作用をしFRETが生じる。 | |||
<br> | |||
3-3. 共有結合修飾によって生じる構造変化を測定するプローブ | |||
このプローブは、ドナー、アクセプター、共有結合修飾を受けるドメイン、これを認識するドメインからなる。プローブが共有結合修飾を受けると、認識するドメインが結合し、ドナーとアクセプターの距離が縮まりFRETが起きる。このプローブは、キナーゼおよびホスファターゼの活性化を測定するために使用される。 | |||
<br> | |||
3-4.生体膜上の小分子を測定するFRETプローブ | |||
このプローブは、主に、脂質分子に応用されてきた。ドナー、脂質結合ドメイン、アクセプターが堅いヘリックス構造で連結され、グリシングリシン配列をその途中に導入することで、そこを中心に一方の蛍光タンパク質が回転することができる。膜結合ドメインを用いて、プローブを結合させる。脂質分子が増えた際に、脂質結合ドメインが脂質分子を認識し、構造変化が起き、ドナートアクセプターの距離が縮まりFRETが生じる。ジアシルグリセロール、イノシトールリン脂質群を測定するために用いられている。 | |||
<br> | |||
<br> | <br> | ||
回編集