「Förster共鳴エネルギー移動」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
23行目: 23行目:
<br>  
<br>  


=== ドナーとアクセプターの蛍光強度を測定する方法 ===
=== ドナーとアクセプターの蛍光強度比を測定する方法 ===
ドナーおよびアクセプターの蛍光を取得後、ドナーとアクセプターの蛍光強度比が計算される。FRETが起きると、ドナーの蛍光強度が減少し、アクセプターの蛍光強度が増加する。現在、最も広く使用されている手法である。データを取得、解釈する際に注意しなければいけないポイントがある。
まず、ドナーの蛍光のアクセプターチャンネルへの漏れ込みである。これによって、SN比の減少の原因となる。改善点としては漏れ込みを極力抑える適切なバンドパスフィルターを用いることである。次に、ドナーおよびアクセプターのバックグラウンドは、FRET変化に影響を与えるため、サブトラクションすることで、より正しいFRET効率が得られる。次に、2分子間FRETで起きることであるが、ドナーとアクセプターの局在の違いは疑似FRETを生じる。リンカーで連結し1分子にすること、局在しているアクセプターの蛍光強度を計算することで修正することが可能である。


FRETが起きると、ドナーの蛍光強度が減少し、アクセプターの蛍光強度が増加する。測定の際には蛍光強度の変化を測定することになるが、細胞などの試料においては、細胞の形状変化に伴う蛍光強度変化などが起きることから、実際にはドナーとアクセプターの蛍光強度の変化を取得することによって、これらのファクターを除外する。
 
測定の際には蛍光強度の変化を測定することになるが、細胞などの試料においては、細胞の形状変化に伴う蛍光強度変化などが起きることから、実際にはドナーとアクセプターの蛍光強度の変化を取得することによって、これらのファクターを除外する。


=== ドナーの蛍光寿命を測定する方法  ===
=== ドナーの蛍光寿命を測定する方法  ===
104

回編集