66
回編集
Keijiimoto (トーク | 投稿記録) 細編集の要約なし |
Keijiimoto (トーク | 投稿記録) 細編集の要約なし |
||
1行目: | 1行目: | ||
Hodgkin-Huxley Equations | Hodgkin-Huxley Equations | ||
== 概略 == | == 概略 == | ||
Alan Lloyd Hodgkin (1914--1998)とAndrew Fielding Huxley (1917- )は、ともにイギリスの電気生理学者である。イカの巨大軸索における活動電位の発生と伝搬を測定し、その解析から現在の電気生理学の基礎となる概念を生み出し、また興奮性細胞(神経細胞、心筋、骨格筋)の電気活動を定量的に扱う道を開いた。HodgkinとHuxleyは、電気生理学の基礎を築いた功績により、同じく電気生理学者のJohn Carew Ecclesとともに、1963年のノーベル医学・生理学賞を受賞している。 | Alan Lloyd Hodgkin (1914--1998)とAndrew Fielding Huxley (1917- )は、ともにイギリスの電気生理学者である。イカの巨大軸索における活動電位の発生と伝搬を測定し、その解析から現在の電気生理学の基礎となる概念を生み出し、また興奮性細胞(神経細胞、心筋、骨格筋)の電気活動を定量的に扱う道を開いた。HodgkinとHuxleyは、電気生理学の基礎を築いた功績により、同じく電気生理学者のJohn Carew Ecclesとともに、1963年のノーベル医学・生理学賞を受賞している。 | ||
HodgkinとHuxleyの業績の意義は次のように要約できる。 | HodgkinとHuxleyの業績の意義は次のように要約できる。 | ||
11行目: | 11行目: | ||
#Na<sup>+</sup>チャネル、K<sup>+</sup>チャネルおよびleakチャネルを示す数式を組み合わせ、活動電位の発生・伝播を数値的に再現した。現在行われている興奮性細胞の電位シミュレーションは、要素が増えるなどして複雑になっているが基本は変わらない。 | #Na<sup>+</sup>チャネル、K<sup>+</sup>チャネルおよびleakチャネルを示す数式を組み合わせ、活動電位の発生・伝播を数値的に再現した。現在行われている興奮性細胞の電位シミュレーションは、要素が増えるなどして複雑になっているが基本は変わらない。 | ||
== <math>\textstyle m^3 h</math>と<math>\textstyle n^4</math> == | == <math>\textstyle m^3 h</math>と<math>\textstyle n^4</math> == | ||
== 電位変化 == | == 電位変化 == | ||
== Two-state model: 基礎的な考え方* == | == Two-state model: 基礎的な考え方* == | ||
2つの状態1と2をとる事の出来る系を考え、それぞれの状態にある確率を<math>\textstyle p1</math>と<math>\textstyle p2</math> とする。<math>\textstyle p1</math>と<math>\textstyle p2</math>は時刻<math>\textstyle t</math>の関数であり、<math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>と表わされる。<math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>は確率であるから、 | 2つの状態1と2をとる事の出来る系を考え、それぞれの状態にある確率を<math>\textstyle p1</math>と<math>\textstyle p2</math> とする。<math>\textstyle p1</math>と<math>\textstyle p2</math>は時刻<math>\textstyle t</math>の関数であり、<math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>と表わされる。<math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>は確率であるから、 | ||
21行目: | 21行目: | ||
::<span class="texhtml">''p''1(''t'') + ''p''2(''t'') = 1</span> | ::<span class="texhtml">''p''1(''t'') + ''p''2(''t'') = 1</span> | ||
の関係にある。いま状態1から状態2へ移っていく単位時間での割合(遷移率) | の関係にある。いま状態1から状態2へ移っていく単位時間での割合(遷移率)をαとし、状態2から状態1への遷移率をβとする。 <math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>の時間的経過を表わす微分方程式は、 | ||
::<math> \frac{dp1(t)}{dt} = -\alpha p1(t) + \beta p2(t)</math> | ::<math> \frac{dp1(t)}{dt} = -\alpha p1(t) + \beta p2(t)</math> | ||
27行目: | 27行目: | ||
::<math> \frac{dp2(t)}{dt} = \alpha p1(t) - \beta p2(t)</math> | ::<math> \frac{dp2(t)}{dt} = \alpha p1(t) - \beta p2(t)</math> | ||
と表される。αとβが定数であるとして、定常状態になれば、 | |||
::<math> \frac{dp1(\infty)}{dt} = -\alpha p1(\infty) + \beta p2(\infty) = 0</math> | ::<math> \frac{dp1(\infty)}{dt} = -\alpha p1(\infty) + \beta p2(\infty) = 0</math> | ||
33行目: | 33行目: | ||
::<math> \frac{dp2(t)}{dt} = \alpha p1(\infty) - \beta p2(\infty) = 0</math> | ::<math> \frac{dp2(t)}{dt} = \alpha p1(\infty) - \beta p2(\infty) = 0</math> | ||
ここで、 | ここで、 | ||
::<math>\textstyle p1(\infty) + p2(\infty) = 1</math> | ::<math>\textstyle p1(\infty) + p2(\infty) = 1</math> | ||
であるから、 | であるから、 | ||
::<math>p1(\infty) = \frac{\beta}{\alpha+\beta}</math> | ::<math>p1(\infty) = \frac{\beta}{\alpha+\beta}</math> | ||
::<math>p2(\infty) = \frac{\alpha}{\alpha+\beta}</math> | ::<math>p2(\infty) = \frac{\alpha}{\alpha+\beta}</math> | ||
となる。また微分方程式を解析的に解くと、 | となる。また微分方程式を解析的に解くと、 | ||
::<math>p1(t) = \left(p1(0)-\frac{\beta}{\alpha+\beta}\right) e^{-(\alpha+\beta)t} + \frac{\beta}{\alpha+\beta} </math> | ::<math>p1(t) = \left(p1(0)-\frac{\beta}{\alpha+\beta}\right) e^{-(\alpha+\beta)t} + \frac{\beta}{\alpha+\beta} </math> | ||
::<math>p2(t) = \left(p2(0)-\frac{\alpha}{\alpha+\beta}\right) e^{-(\alpha+\beta)t} + \frac{\alpha}{\alpha+\beta} </math> | ::<math>p2(t) = \left(p2(0)-\frac{\alpha}{\alpha+\beta}\right) e^{-(\alpha+\beta)t} + \frac{\alpha}{\alpha+\beta} </math> | ||
となる。これらの式は、<math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>はそれぞれ指数関数的に<math>\textstyle p1(\infty)</math>と<math>\textstyle p2(\infty)</math>に近づいていき、その時定数<math>\textstyle \tau</math>は<math>\textstyle 1/(\alpha+\beta)</math>であること、およびこれらの値<math>\textstyle p1(\infty)</math>、<math>\textstyle p2(\infty)</math>、<math>\textstyle \tau</math>は、初期値<math>\textstyle p1(0)</math>、<math>\textstyle p2(0)</math>には依存しないことを示している。さらに、<br> | となる。これらの式は、<math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>はそれぞれ指数関数的に<math>\textstyle p1(\infty)</math>と<math>\textstyle p2(\infty)</math>に近づいていき、その時定数<math>\textstyle \tau</math>は<math>\textstyle 1/(\alpha+\beta)</math>であること、およびこれらの値<math>\textstyle p1(\infty)</math>、<math>\textstyle p2(\infty)</math>、<math>\textstyle \tau</math>は、初期値<math>\textstyle p1(0)</math>、<math>\textstyle p2(0)</math>には依存しないことを示している。さらに、<br> | ||
::<math>q1(t) = p1(t) - \frac{\beta}{\alpha+\beta} </math> | ::<math>q1(t) = p1(t) - \frac{\beta}{\alpha+\beta} </math> | ||
::<math>q2(t) = p2(t) - \frac{\alpha}{\alpha+\beta} </math> | ::<math>q2(t) = p2(t) - \frac{\alpha}{\alpha+\beta} </math> | ||
とすると、 | とすると、 | ||
::<span class="texhtml">''q''1(''t'') = ''q''1(0)''e''<sup> − ( | ::<span class="texhtml">''q''1(''t'') = ''q''1(0)''e''<sup> − (α + β)''t''</sup></span> | ||
::<span class="texhtml">''q''2(''t'') = ''q''2(0)''e''<sup> − ( | ::<span class="texhtml">''q''2(''t'') = ''q''2(0)''e''<sup> − (α + β)''t''</sup></span> | ||
とより単純な形式となる。この関係は微分方程式の数値計算でよく用いられる。 | とより単純な形式となる。この関係は微分方程式の数値計算でよく用いられる。 | ||
== 電位固定法: 基礎となった技術* == | == 電位固定法: 基礎となった技術* == | ||
Hodgkin-Huxley以前に、電気生理学の実験が行われていなかったわけではない。電流と電位変化に関する研究は、かなり多く行われていた。しかしながら、細胞にはいろいろなイオンチャネルを通して電流が流れるため、細胞の電位''v''と外部から流す電流''I''<sub>ext</sub>の間の関係は、 | Hodgkin-Huxley以前に、電気生理学の実験が行われていなかったわけではない。電流と電位変化に関する研究は、かなり多く行われていた。しかしながら、細胞にはいろいろなイオンチャネルを通して電流が流れるため、細胞の電位''v''と外部から流す電流''I''<sub>ext</sub>の間の関係は、 | ||
::<math>\frac{dv}{dt} = -\frac{1}{C}\left(\sum_X G_{X}(v-E_X) - I_{ext}\right)</math> | ::<math>\frac{dv}{dt} = -\frac{1}{C}\left(\sum_X G_{X}(v-E_X) - I_{ext}\right)</math> | ||
となり、実験データの解釈は単純ではない。電位をコントロールして行う実験方法であるvoltage clamp(電位固定法)は、1940年代にアメリカの生物物理学者Kenneth Cole (1900 - 1984)らにより開発された。HodgkinとHuxleyはこのvoltage-clampを巧みに利用して大きな成果を得る事が出来たと言える。上記の式で<math>\textstyle v</math>が一定となるように外部電流を''I''<sub>clamp</sub>を流すと、左辺は0となるため、 | となり、実験データの解釈は単純ではない。電位をコントロールして行う実験方法であるvoltage clamp(電位固定法)は、1940年代にアメリカの生物物理学者Kenneth Cole (1900 - 1984)らにより開発された。HodgkinとHuxleyはこのvoltage-clampを巧みに利用して大きな成果を得る事が出来たと言える。上記の式で<math>\textstyle v</math>が一定となるように外部電流を''I''<sub>clamp</sub>を流すと、左辺は0となるため、 | ||
::<math> I_{clamp} = \sum G_X (v - E_x) </math> | |||
という関係が得られる。もし溶液の組成を工夫しチャネルのブロッカーなどを用いて、イオンチャネル''A''を流れる電流が測れたとすると、 | |||
という関係が得られる。もし溶液の組成を工夫しチャネルのブロッカーなどを用いて、イオンチャネル | |||
::< | ::<span class="texhtml">''I''<sub>clamp</sub> = ''G''<sub>''A''</sub>(''v''-''E''<sub>''A''</sub>)</b></span> | ||
となる。ここで''I''<sub>clamp</sub>は実験の測定値、''v''は実験の設定値、''E''<sub>A</sub>は実験条件で定まる定数なので、イオンチャネル''A''のコンダクタンス''G''<sub>A</sub>を、 | となる。ここで''I''<sub>clamp</sub>は実験の測定値、''v''は実験の設定値、''E''<sub>A</sub>は実験条件で定まる定数なので、イオンチャネル''A''のコンダクタンス''G''<sub>A</sub>を、 | ||
78行目: | 72行目: | ||
と算出できることになる。 | と算出できることになる。 | ||
== HHモデルに対する批判 == | == HHモデルに対する批判 == | ||
Single-channel recording | Single-channel recording | ||
86行目: | 80行目: | ||
Fractalモデルとの論争 | Fractalモデルとの論争 | ||
== 現在におけるHHモデル == | == 現在におけるHHモデル == | ||
== References == | == References == | ||
<references /> | <references /> |
回編集