「蝸牛」の版間の差分

15 バイト除去 、 2012年2月24日 (金)
編集の要約なし
編集の要約なし
1行目: 1行目:
英語名 : cochlea  
英語名 : cochlea  


 [[wikipedia:JA:側頭骨|側頭骨]]錐体内にある[[内耳]]の[[聴覚]]器官。渦巻き状の管で,その名は形状がカタツムリに似ていることに由来する。内部に[[膜迷路]]と呼ばれる構造をもつ。膜迷路は[[wikipedia:JA:リンパ液|リンパ液]]で満たされ,基底部で[[wikipedia:JA:中耳|中耳]]の[[wikipedia:JA:耳小骨|耳小骨]]と連なることにより,音の振動はリンパ液を介して膜迷路内にある[[基底膜]](basilar membrane)を振動させる。基底膜の振動はさらに,基底膜上にある[[コルチ器官]](organ of Corti)の[[有毛細胞]]と呼ばれる感覚器細胞の[[感覚毛]]を揺らし,その結果,音の振動が電気信号に変換される。蝸牛では基底膜上での位置として音の周波数が表される。これは,振動しやすい基底膜上での位置が音の周波数に応じて異なり,周波数が低くなるほど蝸牛の頂部に近くなるためである。周波数成分毎に受容された聴覚信号は,[[蝸牛神経]](cochlear nerve)を介して中枢へと伝えられる<ref>'''小澤瀞司,福田康一郎 編'''<br>標準生理学 第7版.<br>''医学書院'': 2009</ref>。
 [[wikipedia:JA:側頭骨|側頭骨]]錐体内にある[[内耳]]の[[聴覚]]器官。渦巻き状の管で,その名は形状がカタツムリに似ていることに由来する。内部に[[膜迷路]]と呼ばれる構造をもつ。膜迷路は[[wikipedia:JA:リンパ液|リンパ液]]で満たされ,基底部で[[中耳]]の[[耳小骨]]と連なることにより,音の振動はリンパ液を介して膜迷路内にある[[基底膜]](basilar membrane)を振動させる。基底膜の振動はさらに,基底膜上にある[[コルチ器官]](organ of Corti)の[[有毛細胞]]と呼ばれる感覚器細胞の[[感覚毛]]を揺らし,その結果,音の振動が電気信号に変換される。蝸牛では基底膜上での位置として音の周波数が表される。これは,振動しやすい基底膜上での位置が音の周波数に応じて異なり,周波数が低くなるほど蝸牛の頂部に近くなるためである。周波数成分毎に受容された聴覚信号は,[[蝸牛神経]](cochlear nerve)を介して中枢へと伝えられる<ref>'''小澤瀞司,福田康一郎 編'''<br>標準生理学 第7版.<br>''医学書院'': 2009</ref>。




8行目: 8行目:
[[Image:Cochlea Fig.jpg|thumb|right|300px|図 蝸牛の構造]]  
[[Image:Cochlea Fig.jpg|thumb|right|300px|図 蝸牛の構造]]  


 蝸牛は蝸牛軸を中心に2¾回転するらせん状の管構造で,引き延ばすとヒトでは約35mmの長さになる。骨により形成された[[骨迷路]]と,その内部の膜迷路からなる。膜迷路は3層に仕切られ,上層から[[前庭階]](scala vestibuli),[[中心階]](scala media),[[鼓室階]](scala tympani)と呼ばれる。前庭階と中心階は[[ライスネル膜]]で仕切られ,中心階と鼓室階はコルチ器官をのせた基底膜で仕切られている。前庭階と鼓室階は[[外リンパ液]]で満たされ,中心階は[[内リンパ液]]で満たされている。外リンパ液は通常の細胞外液と類似のイオン組成をもつのに対して,内リンパ液は高K<sup>+</sup>,低Na<sup>+</sup>,低Ca<sup>2+</sup>濃度のイオン組成をもち,これは中心階の外側壁を構成する血管条により生成される。また,前庭階と鼓室階は蝸牛基底部でそれぞれ[[卵円窓]](別名,前庭窓)と[[正円窓]]の2枚の膜構造により中耳腔と隔てられ,蝸牛頂部にある蝸牛孔で互いに交通している。卵円窓には[[耳小骨]]([[アブミ骨]])が付着し,耳小骨の振動が膜迷路へと伝えられる。  
 蝸牛は蝸牛軸を中心に2¾回転するらせん状の管構造で,引き延ばすとヒトでは約35mmの長さになる。骨により形成された[[骨迷路]]と,その内部の膜迷路からなる。膜迷路は3層に仕切られ,上層から[[前庭階]](scala vestibuli),[[中心階]](scala media),[[鼓室階]](scala tympani)と呼ばれる。前庭階と中心階は[[ライスネル膜]]で仕切られ,中心階と鼓室階はコルチ器官をのせた基底膜で仕切られている。前庭階と鼓室階は[[外リンパ液]]で満たされ,中心階は[[内リンパ液]]で満たされている。外リンパ液は通常の細胞外液と類似のイオン組成をもつのに対して,内リンパ液は高K<sup>+</sup>,低Na<sup>+</sup>,低Ca<sup>2+</sup>濃度のイオン組成をもち,これは中心階の外側壁を構成する血管条により生成される。また,前庭階と鼓室階は蝸牛基底部でそれぞれ[[卵円窓]](別名,前庭窓)と[[正円窓]]の2枚の膜構造により中耳腔と隔てられ,蝸牛頂部にある[[蝸牛孔]]で互いに交通している。卵円窓には[[耳小骨]]([[アブミ骨]])が付着し,耳小骨の振動が膜迷路へと伝えられる。  




20行目: 20行目:
== コルチ器官 ==
== コルチ器官 ==


 コルチ器官は基底膜上にあり,[[有毛細胞]]と複数の支持細胞からなる。有毛細胞には[[内有毛細胞]]と外有毛細胞の2種類があり,それぞれ蝸牛の内側に1列と外側に3列の細胞群として基底膜の全長にわたって並んでいる。有毛細胞の頂部には感覚毛が生えている。コルチ器官の場合,感覚毛は長さの異なる100本以上の[[不動毛]]からなり,内側から外側に向けて,背の低いものから高いものが規則正しく配列している。最長の不動毛の外側には,動毛の原器である1つの[[基底小体]]が存在する。感覚毛の上部は[[蓋膜]]により覆われている。蓋膜は中心階の内側壁から伸びており,基底膜の振動を感覚毛に伝える作用をもつ。すなわち,基底膜が振動すると蓋膜と基底膜との間に内外側方向へのずれを生じ,感覚毛に機械刺激が加わる。この際,外有毛細胞の感覚毛は蓋膜に付着しているため蓋膜の動きにより直接的に刺激されるのに対して,内有毛細胞の感覚毛は蓋膜との付着をもたず,内リンパ液を介して間接的に刺激される。感覚毛が外側へ屈曲すると,有毛細胞に[[脱分極]]性の[[受容器電位]]が生じる。
 コルチ器官は基底膜上にあり,有毛細胞と複数の支持細胞からなる。有毛細胞には[[内有毛細胞]]と外有毛細胞の2種類があり,それぞれ蝸牛の内側に1列と外側に3列の細胞群として基底膜の全長にわたって並んでいる。有毛細胞の頂部には感覚毛が生えている。コルチ器官の場合,感覚毛は長さの異なる100本以上の[[不動毛]]からなり,内側から外側に向けて,背の低いものから高いものが規則正しく配列している。最長の不動毛の外側には,動毛の原器である1つの[[基底小体]]が存在する。感覚毛の上部は[[蓋膜]]により覆われている。蓋膜は中心階の内側壁から伸びており,基底膜の振動を感覚毛に伝える作用をもつ。すなわち,基底膜が振動すると蓋膜と基底膜との間に内外側方向へのずれを生じ,感覚毛に機械刺激が加わる。この際,外有毛細胞の感覚毛は蓋膜に付着しているため蓋膜の動きにより直接的に刺激されるのに対して,内有毛細胞の感覚毛は蓋膜との付着をもたず,内リンパ液を介して間接的に刺激される。感覚毛が外側へ屈曲すると,有毛細胞に[[脱分極]]性の[[受容器電位]]が生じる。




30行目: 30行目:
== 受容器電位 ==
== 受容器電位 ==


 基底膜の振動特性によって個々の周波数成分に分解された音波は,有毛細胞の働きにより電気信号に変換される。これは,有毛細胞の頂部にある感覚毛への機械刺激が,この部位に存在する[[イオンチャネル]]([[機械受容器チャネル]])を開閉し,受容器電流を発生することによる。感覚毛は内リンパ液に接しているため,受容器電流は主にK<sup>+</sup>の細胞内への移動により生じる。この機械受容器チャネルの分子的な実体は明らかでないが,transient receptor potential [[TRPチャネル]]の可能性が強く示唆されている。一方,有毛細胞における機械受容機構では,感覚毛への機械刺激をイオンチャネルに伝えるリンカー機構の存在が必要である。実際,有毛細胞の感覚毛の先端には[[tip link]]と呼ばれるひも状の構造が知られている<ref><pubmed> 22177415 </pubmed> </ref>。受容器電流による有毛細胞の脱分極(受容器電位)は,さらに[[電位依存性Ca<sup>2+</sup>チャネル]]を活性化することで[[シナプス小胞]]からの[[神経伝達物質]]放出を生じ,この結果,聴覚信号が求心性神経線維へと伝えられる。この神経伝達物質は主に[[グルタミン酸]]である。  
 基底膜の振動特性によって個々の周波数成分に分解された音波は,有毛細胞の働きにより電気信号に変換される。これは,有毛細胞の頂部にある感覚毛への機械刺激が,この部位に存在する[[イオンチャネル]]([[機械受容器チャネル]])を開閉し,受容器電流を発生することによる。感覚毛は内リンパ液に接しているため,受容器電流は主にK<sup>+</sup>の細胞内への移動により生じる。この機械受容器チャネルの分子的な実体は明らかでないが,[[TRPチャンネル|TRP (transient receptor potential) チャンネル]]の可能性が強く示唆されている。一方,有毛細胞における機械受容機構では,感覚毛への機械刺激をイオンチャンネルに伝えるリンカー機構の存在が必要である。実際,有毛細胞の感覚毛の先端には[[tip link]]と呼ばれるひも状の構造が知られている<ref><pubmed> 22177415 </pubmed> </ref>。受容器電流による有毛細胞の[[脱分極]](受容器電位)は,さらに[[電位依存性Ca<sup>2+</sup>チャネル]]を活性化することで[[シナプス小胞]]からの[[神経伝達物質]]放出を生じ,この結果,聴覚信号が求心性神経線維へと伝えられる。この神経伝達物質は主に[[グルタミン酸]]である。  




== 外有毛細胞による振動増幅機構 ==
== 外有毛細胞による振動増幅機構 ==


 外有毛細胞は[[膜電位]]に応じて細胞長が動的に変化する性質をもち,細胞長は[[脱分極]]で短縮,[[過分極]]で伸展する。この外有毛細胞の伸縮機構は非常に速い応答特性(20 kHz以上)をもち,特徴周波数領域の基底膜の振動を増幅することで,聴覚受容の感度と周波数選択性を向上させると考えられている。この外有毛細胞は頂部で周囲の[[支持細胞]]と強固に結合している。このため,外有毛細胞の伸縮は,蓋膜とコルチ器官の距離を変化させるのではなく,コルチ器官自体にゆがみを生じると考えられる。この外有毛細胞の伸縮には[[prestin]]という[[モータータンパク質]]が関わる。Prestin遺伝子のノックアウトマウスでは,外有毛細胞の伸縮特性が失われ,聴覚感度も40-60 dB低下する。このタンパク質は外有毛細胞の側壁膜に多く分布し,[[細胞骨格]]と結びつくことで細胞長を変化させると考えられている<ref><pubmed> 18809494 </pubmed> </ref>。  
 外有毛細胞は[[膜電位]]に応じて細胞長が動的に変化する性質をもち,細胞長は脱分極で短縮,[[過分極]]で伸展する。この外有毛細胞の伸縮機構は非常に速い応答特性(20 kHz以上)をもち,特徴周波数領域の基底膜の振動を増幅することで,聴覚受容の感度と周波数選択性を向上させると考えられている。この外有毛細胞は頂部で周囲の[[支持細胞]]と強固に結合している。このため,外有毛細胞の伸縮は,蓋膜とコルチ器官の距離を変化させるのではなく,コルチ器官自体にゆがみを生じると考えられる。この外有毛細胞の伸縮には[[prestin]]という[[モータータンパク質]]が関わる。Prestin遺伝子のノックアウトマウスでは,外有毛細胞の伸縮特性が失われ,聴覚感度も40-60 dB低下する。このタンパク質は外有毛細胞の側壁膜に多く分布し,[[細胞骨格]]と結びつくことで細胞長を変化させると考えられている<ref><pubmed> 18809494 </pubmed> </ref>。