「色覚」の版間の差分

15 バイト除去 、 2019年4月23日 (火)
編集の要約なし
38行目: 38行目:
[[file:Kuriki Fig3.png|thumb|'''図3:3錐体応答から反対色応答へ'''<br>三角形は上からL-, M-, S-錐体、円形は上から輝度、赤−緑、青−黄の反対色チャネルを表す。三角形と円の間の実線は興奮性の結合、破線は抑制性の結合を表している。]]
[[file:Kuriki Fig3.png|thumb|'''図3:3錐体応答から反対色応答へ'''<br>三角形は上からL-, M-, S-錐体、円形は上から輝度、赤−緑、青−黄の反対色チャネルを表す。三角形と円の間の実線は興奮性の結合、破線は抑制性の結合を表している。]]
[[file:Kuriki Fig4.png|thumb|'''図4:錐体応答空間'''横軸は図3の赤−緑チャネルの応答、縦軸は青−黄チャネルの応答に対応する。]]
[[file:Kuriki Fig4.png|thumb|'''図4:錐体応答空間'''横軸は図3の赤−緑チャネルの応答、縦軸は青−黄チャネルの応答に対応する。]]
 19世紀末から20世紀初頭にかけて色覚のメカニズムに関して対立する2つの学説が存在した。物理学者の[[wj:トマス・ヤング|Thomas Young]]、[[wj: ヘルマン・フォン・ヘルムホルツ|Hermann von Helmholtz]]は、3つの[[原色]](例えば赤、緑、青)の混合により任意の可視光と同じ見え方を作ることができるという現象([[条件等色]]、[[メタメリズム]]; metamerism)という現象観察の経験に基づく3色説を提案し、光に感受性を持つ細胞が3種類であると考えた<ref>'''A. König'''<br>Die Grundempfindungen und ihre Intensitäts-Vertheilung im Spectrum<br>''Sitzungsberichte der Akademie der Wissenschaften zu Berlin'', 29 July 1886, 805–829. [http://www.iscc-archive.org/pdf/KonigTranslation.pdf 英訳版PDF]</ref>。この原理は現在のカラーディスプレイのほとんどが用いている色の表示方法と同一である。
 19世紀末から20世紀初頭にかけて色覚のメカニズムに関して対立する2つの学説が存在した。物理学者の[[wj:トマス・ヤング|Thomas Young]]、[[wj: ヘルマン・フォン・ヘルムホルツ|Hermann von Helmholtz]]は、3つの[[原色]](例えば赤、緑、青)の混合により任意の可視光と同じ見え方を作ることができるという現象([[条件等色]]、[[メタメリズム]]; metamerism)の観察経験に基づく3色説を提案し、光に感受性を持つ細胞が3種類であると考えた<ref>'''A. König'''<br>Die Grundempfindungen und ihre Intensitäts-Vertheilung im Spectrum<br>''Sitzungsberichte der Akademie der Wissenschaften zu Berlin'', 29 July 1886, 805–829. [http://www.iscc-archive.org/pdf/KonigTranslation.pdf 英訳版PDF]</ref>。この原理は現在のカラーディスプレイのほとんどが用いている色の表示方法と同一である。


 生理学者・心理学者の[[wj:エヴァルト・ヘリング|Ewald Hering]]は、赤、緑、青、黄の4つの原色の組み合わせにより任意の色を表現できるとする4色説を唱えた。その中で、4つの原色の、赤と緑、青と黄は互いに対立した[[補色]]の関係にあると主張した。例えば赤い光に数十秒ほど[[順応]]した後で無色(灰色/白)の平面を見ると、赤の補色である緑が知覚される。青に順応した場合には黄色が知覚できる。さらに、赤と緑、あるいは青と黄が同時に知覚されず、「赤っぽい緑」や「青っぽい黄」といった補色を組み合わせた言語表現が存在しないことなどを総合し、赤-緑と青- 黄を正-負の極性で表現する2軸が張る空間を考えると任意の色相を表現できる事を提案した。'''図2'''はHeringの提案した補色関係を基とする色空間を示しており、 横軸・縦軸がそれぞれ青-黄と赤-緑の対立関係と成分の変化を表している。外周の円につけられた色は、内周の円において区切られた扇型で示された色相が4つ の原色の混合によって表現できることを示している。
 生理学者・心理学者の[[wj:エヴァルト・ヘリング|Ewald Hering]]は、赤、緑、青、黄の4つの原色の組み合わせにより任意の色を表現できるとする4色説を唱えた。その中で、4つの原色の、赤と緑、青と黄は互いに対立した[[補色]]の関係にあると主張した。例えば赤い光に数十秒ほど[[順応]]した後で無色(灰色/白)の平面を見ると、赤の補色である緑が知覚される。青に順応した場合には黄色が知覚できる。さらに、赤と緑、あるいは青と黄が同時に知覚されず、「赤っぽい緑」や「青っぽい黄」といった補色を組み合わせた言語表現が存在しないことなどを総合し、赤-緑と青- 黄を正-負の極性で表現する2軸が張る空間を考えると任意の色相を表現できる事を提案した。'''図2'''はHeringの提案した補色関係を基とする色空間を示しており、 横軸・縦軸がそれぞれ青-黄と赤-緑の対立関係と成分の変化を表している。外周の円につけられた色は、内周の円において区切られた扇型で示された色相が4つ の原色の混合によって表現できることを示している。
54行目: 54行目:
 緑に見える光に対してはM錐体の応答が大きくなると同時にL錐体の応答が小さく(M錐体応答 > L錐体応答)なり、赤く見える光に対してはその逆(M錐体応答 < L錐体応答)が生じる。従って、L錐体とM錐体の差分を取り、無彩色をゼロと表現するとL錐体応答-M錐体応答(略してL-Mと表記:'''図4'''横軸)が正の時には赤、負の時には緑を表すことができる。青と黄の成分については、S錐体の応答とLおよびM錐体の和が拮抗して(同様にS-(L+M)と表記:'''図4'''縦軸)色の情報が得られる。網膜や外側膝状体における反対色細胞<ref name=Derrington1984></ref>の応答はこのように色情報を表現していると考えられている。理論上では反対色は正/負の関係で表現されるが、実際の神経信号ではゼロ以下の負の量を表現できない。実際には、反対色応答の正と負の各々に対応(半波整流)した2つのチャネルが存在する。具体的には、+L-M > 0 を出力する細胞と -M+L > 0 (すなわち +L-M < 0)を出力する細胞の2つ、また +S-(L+M) > 0 と +(L+M)-S >0 (すなわち +S-(L+M) < 0)の2つである。
 緑に見える光に対してはM錐体の応答が大きくなると同時にL錐体の応答が小さく(M錐体応答 > L錐体応答)なり、赤く見える光に対してはその逆(M錐体応答 < L錐体応答)が生じる。従って、L錐体とM錐体の差分を取り、無彩色をゼロと表現するとL錐体応答-M錐体応答(略してL-Mと表記:'''図4'''横軸)が正の時には赤、負の時には緑を表すことができる。青と黄の成分については、S錐体の応答とLおよびM錐体の和が拮抗して(同様にS-(L+M)と表記:'''図4'''縦軸)色の情報が得られる。網膜や外側膝状体における反対色細胞<ref name=Derrington1984></ref>の応答はこのように色情報を表現していると考えられている。理論上では反対色は正/負の関係で表現されるが、実際の神経信号ではゼロ以下の負の量を表現できない。実際には、反対色応答の正と負の各々に対応(半波整流)した2つのチャネルが存在する。具体的には、+L-M > 0 を出力する細胞と -M+L > 0 (すなわち +L-M < 0)を出力する細胞の2つ、また +S-(L+M) > 0 と +(L+M)-S >0 (すなわち +S-(L+M) < 0)の2つである。


 このような錐体応答の差を軸として定義した色の座標系として[[MacLeod-Boynton空間]]<ref><pubmed> 490231 </pubmed></ref>や[[DKL空間]]<ref name=Derrington1984></ref>などが存在する。両者を総称して「[[MB-DKL空間]]」と呼ばれることもある。測光器などで測定した光を表す国際標準の座標系で工業的に用いられる[[CIE色度座標系]]のうち、一部は錐体応答空間と同じ性質を持つものがあり相互に座標変換が可能である。
 このような錐体応答の差を軸として定義した色の座標系として[[MacLeod-Boynton空間]]<ref><pubmed> 490231 </pubmed></ref>や[[DKL空間]]<ref name=Derrington1984></ref>などが存在する。両者を総称して「[[MB-DKL空間]]」と呼ばれることもある。測光器などで測定した光を表す国際標準の座標系で工業的に用いられる[[CIE色度座標系]]のうち、一部は錐体応答空間と同じ性質を持つものがあり相互に線形変換が可能である。


 一方、脳内での色情報表現は多様性を増している様子が[[機能的MRI]]([[functional MRI]]) を用いた人の研究で明らかにされつつある。少なくとも[[一次視覚野]]では錐体応答空間の2軸の間の色に選択性を持つ脳活動が報告されている<ref><pubmed> 19271871 </pubmed></ref><ref><pubmed> 20616126 </pubmed></ref><ref>'''Kuriki, I., Nakamura, S., Sun, P., Ueno, K., Matsumiya, K., Tanaka, K., Shionori, S. & Cheng, K.'''<br>Decoding color responses in human visual cortex.<br>''IEICE Trans Fund Electr Comm Comp Sci.'': 2011, 94(2), 473-479</ref><ref><pubmed> 26423093 </pubmed></ref>。 さらに[[高次視覚野|高次の視覚野]]では次項で説明する色カテゴリーに対応した脳活動が見られるという報告もある<ref><pubmed> 24068814 </pubmed></ref>。
 一方、脳内での色情報表現は多様性を増している様子が[[機能的MRI]]([[functional MRI]]) を用いた人の研究で明らかにされつつある。少なくとも[[一次視覚野]]では錐体応答空間の2軸の間の色に選択性を持つ脳活動が報告されている<ref><pubmed> 19271871 </pubmed></ref><ref><pubmed> 20616126 </pubmed></ref><ref>'''Kuriki, I., Nakamura, S., Sun, P., Ueno, K., Matsumiya, K., Tanaka, K., Shionori, S. & Cheng, K.'''<br>Decoding color responses in human visual cortex.<br>''IEICE Trans Fund Electr Comm Comp Sci.'': 2011, 94(2), 473-479</ref><ref><pubmed> 26423093 </pubmed></ref>。 さらに[[高次視覚野|高次の視覚野]]では次項で説明する色カテゴリーに対応した脳活動が見られるという報告もある<ref><pubmed> 24068814 </pubmed></ref>。