16,040
回編集
細編集の要約なし |
細編集の要約なし |
||
7行目: | 7行目: | ||
</div> | </div> | ||
{{box|text= 蛍光スペックル顕微鏡法は、細胞骨格などの高次構造を構成する分子の細胞内ダイナミクスを可視化する方法として開発された。低濃度の蛍光標識体(例えば、蛍光アクチンやチュブリン)を細胞内に導入し、高感度低ノイズ冷却CCDカメラを備えた落射蛍光顕微鏡を用いてタイムラプス撮影を行う。標識体は高次構造にまだらに取り込まれ、斑点状のシグナル(スペックル)として画像化される。このスペックルの動きや密度を計測することで、高次構造を構成する分子の移動や増減を定量的に解析する。さらに、蛍光標識体の密度をさらに下げることで1分子ごとの可視化を可能にした蛍光単分子スペックル顕微鏡も開発された。この方法では分子の動きや結合・解離動態を直接観察し、定量化することができる。アクチン細胞骨格関連分子を中心とした他のタンパク質にも応用され、細胞骨格の組換え、メカノセンス、生理活性物質への応答、細胞接着の制御機構などの詳細な制御様式の解析に用いられている。 | {{box|text= 蛍光スペックル顕微鏡法は、細胞骨格などの高次構造を構成する分子の細胞内ダイナミクスを可視化する方法として開発された。低濃度の蛍光標識体(例えば、蛍光アクチンやチュブリン)を細胞内に導入し、高感度低ノイズ冷却CCDカメラを備えた落射蛍光顕微鏡を用いてタイムラプス撮影を行う。標識体は高次構造にまだらに取り込まれ、斑点状のシグナル(スペックル)として画像化される。このスペックルの動きや密度を計測することで、高次構造を構成する分子の移動や増減を定量的に解析する。さらに、蛍光標識体の密度をさらに下げることで1分子ごとの可視化を可能にした蛍光単分子スペックル顕微鏡も開発された。この方法では分子の動きや結合・解離動態を直接観察し、定量化することができる。アクチン細胞骨格関連分子を中心とした他のタンパク質にも応用され、細胞骨格の組換え、メカノセンス、生理活性物質への応答、細胞接着の制御機構などの詳細な制御様式の解析に用いられている。}} | ||
== 開発と発展 == | == 開発と発展 == | ||
22行目: | 22行目: | ||
fluorescent speckle microscopy (FSM) | fluorescent speckle microscopy (FSM) | ||
蛍光スペックル顕微鏡法では、蛍光標識した高次構造のサブユニットを低濃度で細胞内に導入し、タイムラプス観察を行う。蛍光標識体は、高次構造に不均一に取り込まれ、斑点状のシグナル(スペックル)として画像化される。試験管内で蛍光チュブリンを共重合した微小管の観察とシミュレーションから、蛍光標識体の割合は0.5–2% がFSMに適しており、1つ1つのスペックルは2–10個の蛍光分子を含む multi-fluorophore speckleであることが示されている。FSMを活用した重要な応用例としては、紡錘体を構成する[[wj:極微小管|極微小管]] (polar microtubule) と[[w:動原体|動原体]]微小管 (kinetochore microtubule)の紡錘体極方向への移動 (microtubule flux) と制御様式を定量的に明らかにしたことが挙げられる<ref name=ref1><pubmed>9811609</pubmed></ref><ref name=ref5><pubmed> | 蛍光スペックル顕微鏡法では、蛍光標識した高次構造のサブユニットを低濃度で細胞内に導入し、タイムラプス観察を行う。蛍光標識体は、高次構造に不均一に取り込まれ、斑点状のシグナル(スペックル)として画像化される。試験管内で蛍光チュブリンを共重合した微小管の観察とシミュレーションから、蛍光標識体の割合は0.5–2% がFSMに適しており、1つ1つのスペックルは2–10個の蛍光分子を含む multi-fluorophore speckleであることが示されている。FSMを活用した重要な応用例としては、紡錘体を構成する[[wj:極微小管|極微小管]] (polar microtubule) と[[w:動原体|動原体]]微小管 (kinetochore microtubule)の紡錘体極方向への移動 (microtubule flux) と制御様式を定量的に明らかにしたことが挙げられる<ref name=ref1><pubmed>9811609</pubmed></ref><ref name=ref5><pubmed> 12900391 </pubmed></ref>。 | ||
=== 定量蛍光スペックル顕微鏡法 === | === 定量蛍光スペックル顕微鏡法 === | ||
quantitative fluorescent speckle microscopy (qFSM) | quantitative fluorescent speckle microscopy (qFSM) | ||
定量蛍光スペックル顕微鏡法は、主に蛍光スペックル顕微鏡法で観察されるアクチン動態解析に用いられる。膨大なアクチンスペックルデータをコンピュータ解析し、例えば、スペックルの出現/消失によりアクチン重合/脱重合の顕著な場所がヒートマップ様の分布で示される<ref name=ref3 />。しかし、スペックル密度が高い場合、スペックルの融合や分離、近い場所での消失/出現を自動解析で正確に捉えることは困難であることが予想され、解析データにはエラーが含まれる可能性が指摘されている<ref><pubmed> | 定量蛍光スペックル顕微鏡法は、主に蛍光スペックル顕微鏡法で観察されるアクチン動態解析に用いられる。膨大なアクチンスペックルデータをコンピュータ解析し、例えば、スペックルの出現/消失によりアクチン重合/脱重合の顕著な場所がヒートマップ様の分布で示される<ref name=ref3 />。しかし、スペックル密度が高い場合、スペックルの融合や分離、近い場所での消失/出現を自動解析で正確に捉えることは困難であることが予想され、解析データにはエラーが含まれる可能性が指摘されている<ref><pubmed>19494123</pubmed></ref>。 | ||
=== 単分子蛍光スペックル顕微鏡法 === | === 単分子蛍光スペックル顕微鏡法 === | ||
37行目: | 37行目: | ||
この原理に基づいて、アクチン細胞骨格関連分子を中心とした他のタンパク質にも応用されており、分子の移動速度や、細胞構造への分子の結合・解離時間が精密に定量できる。SiMS顕微鏡では1個の蛍光分子に由来するスペックルを画像化しており、蛍光スペックル顕微鏡で観察されるmulti-fluorophore speckleとは区別されるべきである。また、1分子レベルで直接現象を捉えるので、定量蛍光スペックル顕微鏡の解説で述べたようなエラーは回避できる。ただし、統計的に信頼できる情報を得るためには、十分な時間・空間に渡る解析を必要とする。 | この原理に基づいて、アクチン細胞骨格関連分子を中心とした他のタンパク質にも応用されており、分子の移動速度や、細胞構造への分子の結合・解離時間が精密に定量できる。SiMS顕微鏡では1個の蛍光分子に由来するスペックルを画像化しており、蛍光スペックル顕微鏡で観察されるmulti-fluorophore speckleとは区別されるべきである。また、1分子レベルで直接現象を捉えるので、定量蛍光スペックル顕微鏡の解説で述べたようなエラーは回避できる。ただし、統計的に信頼できる情報を得るためには、十分な時間・空間に渡る解析を必要とする。 | ||
単分子蛍光スペックル顕微鏡原法では、GFP融合タンパク質が蛍光標識体として用いられるが、低密度にGFPを発現する細胞を選別する作業は難しく、経験が必要であった。2014年には高効率・簡便な改良型である、電気穿孔利用型単分子蛍光スペックル顕微鏡法 (electroporation-based single-molecule speckle microscopy: eSiMS)が開発された。新法では、蛍光標識したアクチンタンパク質を電気穿孔法(エレクトロポレーション)で直接細胞に導入することで、ほぼ100%の細胞で蛍光アクチンの単分子観察が可能となった<ref name=ref4><pubmed> 24501425 </pubmed></ref>。さらに、明るく、高い退色耐性をもつ赤色蛍光色素[[DyLight550]]や近赤外色素[[CF680R]]で目的タンパク質を標識することで、分子トラッキングの時空間分解能が大幅に向上すると共に、細胞深部でのSiMS解析や、多色同時SiMSイメージングが可能になるなど、応用が広がっている。 | |||
== 関連項目 == | == 関連項目 == |