「機能的磁気共鳴画像法」の版間の差分

編集の要約なし
44行目: 44行目:


=== fMRIデータの前処理 ===
=== fMRIデータの前処理 ===
 3テスラMRI装置でのfMRIにおいて、神経活動による信号変化は全信号変動の約7パーセント程度とされる。生体や装置の熱ノイズが約50%を占め、残りはMRI装置の不完全性による信号ドリフトや、非撮像体の動き等に由来するアーチファクトとされる<ref><pubmed> 23707591</pubmed></ref>。頭部の動きは画像位置合わせにより補正(motion correction/realignment)することが通常であるが、この処理では補正しきれないMRI信号変動が残存する。加えて心拍や呼吸などの生理的要因による信号変動も存在するため、これら非神経性の信号を可能な限り分離・除去することが重要である('''図3''')。古典的には、頭部動き補正の後、安静時・課題fMRIともに一定の周波数帯域の信号を除去するフィルター(high pass filterやlow pass filter)をかけることでノイズ除去が行われてきた。しかしこの方法では、関心ある神経活動信号も除去してしまうため、独立成分分析によるノイズ同定・軽減への期待が高い<ref><pubmed> 24389422</pubmed></ref>(後述「fMRIの統計解析」参照)。
 3テスラMRI装置でのfMRIにおいて、神経活動による信号変化は全信号変動の約7パーセント程度とされる。生体や装置の熱ノイズが約50%を占め、残りはMRI装置の不完全性による信号ドリフトや、非撮像体の動き等に由来するアーチファクトとされる<ref><pubmed> 23707591</pubmed></ref>。頭部の動きは画像位置合わせにより補正(motion correction/realignment)することが通常であるが、この処理では補正しきれないMRI信号変動が残存する。加えて心拍や呼吸などの生理的要因による信号変動も存在するため、これら非神経性の信号を可能な限り分離・除去することが重要である('''図3''')。古典的には、頭部動き補正の後、安静時・課題fMRIともに一定の周波数帯域の信号を除去するフィルター(high pass filterやlow pass filter)をかけることでノイズ除去が行われてきた。しかしこの方法では、関心ある神経活動信号も除去してしまうため、独立成分分析によるノイズ同定・軽減への期待が高い<ref><pubmed> 24389422</pubmed></ref>(後述「[[機能的磁気共鳴画像法#fMRIの統計解析|fMRIの統計解析]]」参照)。
    
    
[[File:Hanakawa_fMRI_Fig3.png|thumb|right|'''図3. fMRIデータの前処置―動き補正・ノイズ減弱の効果'''<br>'''左.''' 前処理していない元fMRI画像(TR=1.5秒で5分間撮影したデータのうち15秒間のデータのみ提示)<br>'''中.''' 剛体変換による数学的な動き補正(motion correction/realignment)のみを行ったfMRI画像。動きはある程度補正されているものの、撮像中の頭部の動きは大きなMRI信号の変動を引き起こすためにノイズ軽減処理はまだ十分ではないことが見て取れる。<br>'''右.''' 動き補正に続き、独立成分分析によるノイズ軽減処理と脳外組織のマスク除去を行った後の画像。頭部の動きによる画像アーチファクトは目立たない。いずれも脳標準空間への位置合わせを行い、38倍速で表示している。]]
[[File:Hanakawa_fMRI_Fig3.png|thumb|right|'''図3. fMRIデータの前処置―動き補正・ノイズ減弱の効果'''<br>'''左.''' 前処理していない元fMRI画像(TR=1.5秒で5分間撮影したデータのうち15秒間のデータのみ提示)<br>'''中.''' 剛体変換による数学的な動き補正(motion correction/realignment)のみを行ったfMRI画像。動きはある程度補正されているものの、撮像中の頭部の動きは大きなMRI信号の変動を引き起こすためにノイズ軽減処理はまだ十分ではないことが見て取れる。<br>'''右.''' 動き補正に続き、独立成分分析によるノイズ軽減処理と脳外組織のマスク除去を行った後の画像。頭部の動きによる画像アーチファクトは目立たない。いずれも脳標準空間への位置合わせを行い、38倍速で表示している。]]
[[File:Hanakawa_fMRI_Fig4.png|thumb|right|'''図4. 機能的MRI画像の歪み補正の効果'''<br>fMRI画像で用いるEPI画像は、主に撮像時の位相方向の設定と静磁場不均一性に依存して歪みが生じる。<br>'''A, B.''' 位相方向を前⇒後(矢印)、および後⇒前(矢印)に設定した場合のEPI画像。それぞれの画像が前後軸に沿ってに逆方向に歪んでいることがわかる。<br>'''C.''' 歪み補正を行った後のEPI画像<br>'''D.''' 同じ位置での高解像度T1強調画像の断面像。歪み補正により画像内の各脳部位の位置がほぼ一致している。<br>'''E.''' 歪み補正により推定した位置ズレ(shift)の大きさを示す画像。歪み補正する前と後では同断面内で最大15mmの位置ズレがみられた。]]
[[File:Hanakawa_fMRI_Fig4.png|thumb|right|'''図4. 機能的MRI画像の歪み補正の効果'''<br>fMRI画像で用いるEPI画像は、主に撮像時の位相方向の設定と静磁場不均一性に依存して歪みが生じる。<br>'''A, B.''' 位相方向を前⇒後(矢印)、および後⇒前(矢印)に設定した場合のEPI画像。それぞれの画像が前後軸に沿ってに逆方向に歪んでいることがわかる。<br>'''C.''' 歪み補正を行った後のEPI画像<br>'''D.''' 同じ位置での高解像度T1強調画像の断面像。歪み補正により画像内の各脳部位の位置がほぼ一致している。<br>'''E.''' 歪み補正により推定した位置ズレ(shift)の大きさを示す画像。歪み補正する前と後では同断面内で最大15mmの位置ズレがみられた。]]
 また上述のようにfMRIデータにおける熱ノイズ量はBOLD信号変動に対して非常に大きい。そのため統計解析の前に、ガウスフィルタを適応して信号ノイズ比を向上させる操作(空間平滑化 spatial smoothing)が行われる。しかしこの方法は位置情報の正確さを低下させるため、位置情報を犠牲にしないノイズ軽減法(例:ウィシャートフィルター)の開発も現在進んでいる(<ref name= Glasser2016><pubmed> 27571196</pubmed></ref>の図S7を参照)。
 また上述のようにfMRIデータにおける熱ノイズ量はBOLD信号変動に対して非常に大きい。そのため統計解析の前に、ガウスフィルタを適応して信号ノイズ比を向上させる操作(空間平滑化 spatial smoothing)が行われる。しかしこの方法は位置情報の正確さを低下させるため、位置情報を犠牲にしないノイズ軽減法(例:ウィシャートフィルター)の開発も現在進んでいる(<ref name= Glasser2016><pubmed> 27571196</pubmed></ref>の図S7を参照)。


 またEPI画像法には、生体との干渉により生じる静磁場(B0)の空間的不均一性により画像の歪み・位置ずれが生じる。そこで静磁場不均一性の空間分布を示す画像を別に撮像し、この情報を用いてfMRI画像の歪みを補正することで本来の位置を復元する('''図4''')<ref><pubmed> 14568458</pubmed></ref>。撮像条件にもよるが、この空間的位置ずれは数mm~数10 mm程度発生し、fMRI画像を解剖画像に位置合わせする際に誤差を引き起こす。皮質厚が平均2.6 mm程度しかないことを考えると、正確な機能マッピングを行うためには位置ずれ補正が重要である。
 またEPI画像法には、生体との干渉により生じる静磁場(B0)の空間的不均一性により画像の歪み・位置ずれが生じる。そこで静磁場不均一性の空間分布を示す画像を別に撮像し、この情報を用いてfMRI画像の歪みを補正することで本来の位置を復元する('''図4''')<ref><pubmed> 14568458</pubmed></ref>。撮像条件にもよるが、この空間的位置ずれは数mm~数10 mm程度発生し、fMRI画像を解剖画像に位置合わせする際に誤差を引き起こす。皮質厚が平均2.6 mm程度しかないことを考えると、正確な機能マッピングを行うためには位置ずれ補正が重要である。


 また個人間の脳の形や大きさの違いによらない機能マッピングを行うため、3次元位置合わせ法を適用することで脳形状の標準化が行われる。脳の3次元アトラス空間の国際標準として、モントリオール神経研究所(Montreal Neurological Institute, MNI)が作成した座標系が一般的に使われ、MNI標準I空間内の座標位置(x, y, z)上に脳活動を位置同定(マッピング)することで脳の機能構築の解明が進んできた。これまでの膨大なfMRI研究の成果は、MNI座標での機能マッピングデータベースとして構築され<ref><pubmed> 21706013</pubmed></ref>、web上の視覚ツールも公開されている(neurosynth.org)。
 また個人間の脳の形や大きさの違いによらない機能マッピングを行うため、3次元位置合わせ法を適用することで脳形状の標準化が行われる。脳の3次元アトラス空間の国際標準として、モントリオール神経研究所(Montreal Neurological Institute, MNI)が作成した座標系が一般的に使われ、MNI標準I空間内の座標位置(x, y, z)上に脳活動を位置同定(マッピング)することで脳の機能構築の解明が進んできた。これまでの膨大なfMRI研究の成果は、MNI座標での機能マッピングデータベースとして構築され<ref><pubmed> 21706013</pubmed></ref>、web上の視覚ツールも公開されている([[[https://neurosynth.org neurosynth.org]]])。


 MNI座標系のような3次元空間での位置合わせ技術も、高次元の非線形法が進歩したことで精度が向上している。しかし複雑な脳回のパターンを保ったまま3次元位置合わせを行うことは原理的に困難である。そこで、大脳皮質が2次元のシートが折れ曲がった構造をしていることに注目した皮質表面解析法が生まれた<ref><pubmed> 9448242</pubmed></ref><ref><pubmed> 22248573</pubmed></ref>。構造MRI画像から皮質を分画化し、その外表面(皮質と脳軟膜境界)と内表面(白質・皮質境界)を抽出し「皮質表面」を得る。そしてこの皮質表面上で脳回のパターン(曲率や深度)を位置合わせする手法(surface registration)が提案され<ref><pubmed> 10619420</pubmed></ref>、個人間の皮質機能構築を2次元座標上で標準化できるようになった。また皮質表面の2次元座標系と、皮質下構造の3次元MNI座標系を組み合わせた新しい座標(灰白質座標)と専用フォーマットCIFTIも設計された。正確な皮質表面の抽出には、高解像度・高画質の脳構造画像が必要であり、得られた表面境界とfMRI画像との正確な位置合わせを行うことで<ref><pubmed> 19573611</pubmed></ref>、fMRI画像を灰白質画像に正確に重ね合わせ、個人間解析を高い位置精度で行うことが可能になってきている。さらに、脳回情報だけでなく機能や構造に関わる値(RSNやミエリンマップ等)を複数組み合わせた、さらに高い精度の表面位置合わせ法も開発され、応用も進んでいる<ref><pubmed> 29100940</pubmed></ref>。
 MNI座標系のような3次元空間での位置合わせ技術も、高次元の非線形法が進歩したことで精度が向上している。しかし複雑な脳回のパターンを保ったまま3次元位置合わせを行うことは原理的に困難である。そこで、大脳皮質が2次元のシートが折れ曲がった構造をしていることに注目した皮質表面解析法が生まれた<ref><pubmed> 9448242</pubmed></ref><ref><pubmed> 22248573</pubmed></ref>。構造MRI画像から皮質を分画化し、その外表面(皮質と脳軟膜境界)と内表面(白質・皮質境界)を抽出し「皮質表面」を得る。そしてこの皮質表面上で脳回のパターン(曲率や深度)を位置合わせする手法(surface registration)が提案され<ref><pubmed> 10619420</pubmed></ref>、個人間の皮質機能構築を2次元座標上で標準化できるようになった。また皮質表面の2次元座標系と、皮質下構造の3次元MNI座標系を組み合わせた新しい座標(灰白質座標)と専用フォーマットCIFTIも設計された。正確な皮質表面の抽出には、高解像度・高画質の脳構造画像が必要であり、得られた表面境界とfMRI画像との正確な位置合わせを行うことで<ref><pubmed> 19573611</pubmed></ref>、fMRI画像を灰白質画像に正確に重ね合わせ、個人間解析を高い位置精度で行うことが可能になってきている。さらに、脳回情報だけでなく機能や構造に関わる値(RSNやミエリンマップ等)を複数組み合わせた、さらに高い精度の表面位置合わせ法も開発され、応用も進んでいる<ref><pubmed> 29100940</pubmed></ref>。
58行目: 59行目:
[[File:Hanakawa_fMRI_Fig5.png|thumb|'''図5. 課題fMRIの課題デザイン・解析・結果の例'''<br>ヒト脳コネクトームプロジェクト(HCP)の課題fMRIデータを使用。<br>
[[File:Hanakawa_fMRI_Fig5.png|thumb|'''図5. 課題fMRIの課題デザイン・解析・結果の例'''<br>ヒト脳コネクトームプロジェクト(HCP)の課題fMRIデータを使用。<br>
指示に反応して体の各部位(右足・左足・右手・左手・舌)を動かす課題fMRIの結果。'''A.''' 運動時の脳活動をモデル化後、血流動態反応(HRF)を畳み込んでBOLD信号変化モデル(緑線)を作成する。データへのあてはめ(GLM)を行い、モデルとデータが有意に相関した部位(体素)の信号変化(赤線)を示している。'''B.''' 運動課題のBOLD信号変化モデルを30例の被験者のデータにあてはめた際のt検定の結果(t値)を、大脳皮質表面に投影して表示。左側は平均の皮質表面、右側はその皮質表面を膨らませて表示することで、脳溝内の統計値を見やすくしている。運動野、補足運動野、2次体性感覚野の神経活動が示唆される。]]
指示に反応して体の各部位(右足・左足・右手・左手・舌)を動かす課題fMRIの結果。'''A.''' 運動時の脳活動をモデル化後、血流動態反応(HRF)を畳み込んでBOLD信号変化モデル(緑線)を作成する。データへのあてはめ(GLM)を行い、モデルとデータが有意に相関した部位(体素)の信号変化(赤線)を示している。'''B.''' 運動課題のBOLD信号変化モデルを30例の被験者のデータにあてはめた際のt検定の結果(t値)を、大脳皮質表面に投影して表示。左側は平均の皮質表面、右側はその皮質表面を膨らませて表示することで、脳溝内の統計値を見やすくしている。運動野、補足運動野、2次体性感覚野の神経活動が示唆される。]]
=== fMRIの統計解析 ===
=== fMRIの統計解析 ===
==== 単変量解析 ====
==== 単変量解析 ====