「ドリフト拡散モデル」の版間の差分

64行目: 64行目:
==モデルフィッティング==
==モデルフィッティング==


上記のように解析的に得られる反応時間の分布が実際のデータに近づくようにパラメータを調整することで,明示的にドリフト拡散過程をシミュレートせずともモデルのパラメータを推定することができる。また,複数ある候補のモデルからデータをよりよく説明するモデルを選択することも可能となる。パラメータの推定やモデル選択をする作業を総称してモデルフィッティングと呼ぶ。
 上記のように解析的に得られる反応時間の分布が実際のデータに近づくようにパラメータを調整することで,明示的にドリフト拡散過程をシミュレートせずともモデルのパラメータを推定することができる。また,複数ある候補のモデルからデータをよりよく説明するモデルを選択することも可能となる。パラメータの推定やモデル選択をする作業を総称してモデルフィッティングと呼ぶ。


実験で収集された反応データに対して,モデルフィッティングをする方法として,<math>\chi^{2}</math>最小化,最尤法,重み付き最小二乗法,ベイズ推定等がある<ref><pubmed> 12412886</pubmed></ref>。モデルフィッティング用のソフトウェアとしては,以下がある。
実験で収集された反応データに対して,モデルフィッティングをする方法として,<math>\chi^{2}</math>最小化,最尤法,重み付き最小二乗法,ベイズ推定等がある<ref><pubmed> 12412886</pubmed></ref>。モデルフィッティング用のソフトウェアとしては,以下がある。
75行目: 75行目:
* rtdists(https://github.com/rtdists/rtdists/): ドリフト拡散モデルをはじめとする反応時間のモデリングに有用な関数が含められたRパッケージ。
* rtdists(https://github.com/rtdists/rtdists/): ドリフト拡散モデルをはじめとする反応時間のモデリングに有用な関数が含められたRパッケージ。


それぞれのモデルや推定方法には仮定がおかれていることがあり,モデルフィッティングに用いるデータがその仮定に合っているかどうかは事前に確認する必要がある。各種推定法に関する専門家による推奨については,Boehm et al.(2018)<ref name=Boehm2018><b>Boehm, U., Annis, J., Frank, M. J., Hawkins, G. E., Heathcote, A., Kellen, D., Krypotos, A.-M., Lerche, V., Logan, G. D., Palmeri, T. J., van Ravenzwaaij, D., Servant, M., Singmann, H., Starns, J. J., Voss, A., Wiecki, T. V., Matzke, D., & Wagenmakers, E.-J.(2018). </b><br>Estimating across-trial variability parameters of the Diffusion Decision Model: Expert advice and recommendations.<br><i>Journal of Mathematical Psychology</i>, 87, 46–75</ref>にまとめられている。また,ドリフト拡散モデルでのモデルフィッティングにあたっては,十分なデータ数が必要になる。特に反応時間の分布の情報を用いてパラメータ推定する方法の場合は,試行数が100程度の場合は,ドリフト拡散モデルの試行間変動性にかかわるパラメータの推定が真値からずれることが示されている<ref><pubmed>18229471</pubmed></ref>。そのため,試行間変動性にかかわるパラメータの推定を行う場合は,できるだけ多くの試行数が必要になるが,試行数を増やすと参加者の動機づけが低下する,疲れの影響が出る,などの問題も生じる。また,そもそも試行数を増やすことが難しい実験状況も多い<ref name=Boehm2018 />。そこで,パラメータ推定にあたり,参加者集団のパタメータの分布も仮定した階層ベイズ推定を行うことで,各参加者の試行数は少なくとも安定した推定する方法も提案されている<ref><pubmed>23935581</pubmed></ref><ref><pubmed>29601060</pubmed></ref>。
 それぞれのモデルや推定方法には仮定がおかれていることがあり,モデルフィッティングに用いるデータがその仮定に合っているかどうかは事前に確認する必要がある。各種推定法に関する専門家による推奨については,Boehmらの論文<ref name=Boehm2018><b>Boehm, U., Annis, J., Frank, M. J., Hawkins, G. E., Heathcote, A., Kellen, D., Krypotos, A.-M., Lerche, V., Logan, G. D., Palmeri, T. J., van Ravenzwaaij, D., Servant, M., Singmann, H., Starns, J. J., Voss, A., Wiecki, T. V., Matzke, D., & Wagenmakers, E.-J.(2018). </b><br>Estimating across-trial variability parameters of the Diffusion Decision Model: Expert advice and recommendations.<br><i>Journal of Mathematical Psychology</i>, 87, 46–75</ref>にまとめられている。また,ドリフト拡散モデルでのモデルフィッティングにあたっては,十分なデータ数が必要になる。特に反応時間の分布の情報を用いてパラメータ推定する方法の場合は,試行数が100程度の場合は,ドリフト拡散モデルの試行間変動性にかかわるパラメータの推定が真値からずれることが示されている<ref><pubmed>18229471</pubmed></ref>。そのため,試行間変動性にかかわるパラメータの推定を行う場合は,できるだけ多くの試行数が必要になるが,試行数を増やすと参加者の動機づけが低下する,疲れの影響が出る,などの問題も生じる。また,そもそも試行数を増やすことが難しい実験状況も多い<ref name=Boehm2018 />。そこで,パラメータ推定にあたり,参加者集団のパタメータの分布も仮定した階層ベイズ推定を行うことで,各参加者の試行数は少なくとも安定した推定する方法も提案されている<ref><pubmed>23935581</pubmed></ref><ref><pubmed>29601060</pubmed></ref>。


==適用事例==
==適用事例==
135

回編集