16,039
回編集
8行目: | 8行目: | ||
== 統計的依存性を定量化する機能的結合の指標 == | == 統計的依存性を定量化する機能的結合の指標 == | ||
統計的依存性を定量化する機能的結合の指標にはさまざまなものがある。最も単純な指標としては二時系列間の相関係数<ref name=Friston1994>Friston, K.R. (1994).<br>Functional and effective connectivity in neuroimaging: a synthesis. Human brain mapping, 2(1-2), 56-78. [https://doi.org/10.1002/hbm.460020107 PDF]</ref> [1] | 統計的依存性を定量化する機能的結合の指標にはさまざまなものがある。最も単純な指標としては二時系列間の相関係数<ref name=Friston1994>'''Friston, K.R. (1994).'''<br>Functional and effective connectivity in neuroimaging: a synthesis. Human brain mapping, 2(1-2), 56-78. [https://doi.org/10.1002/hbm.460020107 PDF]</ref> [1]('''図1''')が挙げられる。相関係数は、活動時系列そのものに対して以外にも、活動時系列の特定の周波数成分に対して<ref name=Fox2005><pubmed>15976020</pubmed></ref>[2]や、活動時系列の特定の周波数成分の包絡線に対して<ref name=Hipp2012><pubmed>22561454</pubmed></ref>[3]計算されることがある。 | ||
図1. 相関係数を用いて活動時系列間の統計的依存性を定量化した例<br> | [[ファイル:Fukushima Functional connectivity Fig1.png|350px|サムネイル|'''図1. 相関係数を用いて活動時系列間の統計的依存性を定量化した例'''<br> | ||
領野内で平均化されたヒト安静時機能的磁気共鳴画像(functional magnetic resonance imaging; fMRI)データ時系列と、これらの時系列間の相関係数の値を図示している。 | 領野内で平均化されたヒト安静時機能的磁気共鳴画像(functional magnetic resonance imaging; fMRI)データ時系列と、これらの時系列間の相関係数の値を図示している。]] | ||
相関係数には着目する二時系列以外からの間接的な影響が含まれるが、この影響を取り除くことを目的として計算される指標には偏相関係数<ref name=Marrelec2006><pubmed>16777436</pubmed></ref>[4]や正則化逆共分散(regularized inverse covariance)<ref name=Friedman2008><pubmed>18079126</pubmed></ref>[5]がある。 | 相関係数には着目する二時系列以外からの間接的な影響が含まれるが、この影響を取り除くことを目的として計算される指標には偏相関係数<ref name=Marrelec2006><pubmed>16777436</pubmed></ref>[4]や正則化逆共分散(regularized inverse covariance)<ref name=Friedman2008><pubmed>18079126</pubmed></ref>[5]がある。 | ||
また、より高次の統計量(相関係数は二次統計量)や非線形の統計的依存性までを反映する指標には相互情報量<ref name=Shannon1948>Shannon, C.E. (1948).<br> A mathematical theory of communication. The Bell system technical journal, 27(3), 379-423. [https://doi.org/10.1002/j.1538-7305.1948.tb01338.x PDF]</ref>[6]が、周波数空間における統計的依存性を定量化する指標にはコヒーレンス<ref name=Walter1963><pubmed>20191690</pubmed></ref>[7]、位相ロック値(phase locking value)<ref name=Lachaux1999><pubmed>10619414</pubmed></ref> [8]などがある。 | また、より高次の統計量(相関係数は二次統計量)や非線形の統計的依存性までを反映する指標には相互情報量<ref name=Shannon1948>'''Shannon, C.E. (1948).'''<br> A mathematical theory of communication. The Bell system technical journal, 27(3), 379-423. [https://doi.org/10.1002/j.1538-7305.1948.tb01338.x PDF]</ref>[6]が、周波数空間における統計的依存性を定量化する指標にはコヒーレンス<ref name=Walter1963><pubmed>20191690</pubmed></ref>[7]、位相ロック値(phase locking value)<ref name=Lachaux1999><pubmed>10619414</pubmed></ref> [8]などがある。 | ||
上に挙げた指標は、すべて因果性を仮定しない向きなしの統計的依存性の定量化に用いられる指標であるが、向きありの統計的依存性を定量化する際に用いられる代表的な因果性の定義としてはグレンジャー因果性<ref name=Granger1969>'''Granger, C.W. (1969).'''<br>Investigating causal relations by econometric models and cross-spectral methods. Econometrica: journal of the Econometric Society, 37(3), 424-38. [https://doi.org/10.2307/1912791 PDF]</ref> [9]が挙げられる。グレンジャー因果性の定義では、「AとBの過去の値を用いた場合のBの値の予測精度が、Bのみの過去の値を用いた場合のBの値の予測精度よりも高いとき、AはBの原因である(A causes B)」とされる。グレンジャー因果性を計算する際には、ベクトル自己回帰モデルによって多変量時系列がモデル化され、本モデルに基づいた統計量からグレンジャー因果性の評価に用いられるさまざまな定量化指標<ref name=Geweke1984>'''Geweke, J.F. (1984).'''<br>Measures of conditional linear dependence and feedback between time series. Journal of the American Statistical Association, 79(388), 907-15. | 上に挙げた指標は、すべて因果性を仮定しない向きなしの統計的依存性の定量化に用いられる指標であるが、向きありの統計的依存性を定量化する際に用いられる代表的な因果性の定義としてはグレンジャー因果性<ref name=Granger1969>'''Granger, C.W. (1969).'''<br>Investigating causal relations by econometric models and cross-spectral methods. Econometrica: journal of the Econometric Society, 37(3), 424-38. [https://doi.org/10.2307/1912791 PDF]</ref> [9]が挙げられる。グレンジャー因果性の定義では、「AとBの過去の値を用いた場合のBの値の予測精度が、Bのみの過去の値を用いた場合のBの値の予測精度よりも高いとき、AはBの原因である(A causes B)」とされる。グレンジャー因果性を計算する際には、ベクトル自己回帰モデルによって多変量時系列がモデル化され、本モデルに基づいた統計量からグレンジャー因果性の評価に用いられるさまざまな定量化指標<ref name=Geweke1984>'''Geweke, J.F. (1984).'''<br>Measures of conditional linear dependence and feedback between time series. Journal of the American Statistical Association, 79(388), 907-15.</ref> <ref name=Baccala2001><pubmed>11417058</pubmed></ref> [10, 11]が計算される。 | ||
グレンジャー因果性とは異なりベクトル自己回帰モデルを仮定せずに、情報量ベースで向きありの統計的依存性を定量化する指標には移動エントロピー<ref name=Vicente2011><pubmed>20706781</pubmed></ref>[12]がある。なお、因果性を仮定した向きありの統計的依存性を定量化するこれらの指標は、後述する有効結合の推定値としてみなされる場合がある<ref name=Vicente2011 /><ref name=Friston2011><pubmed>22432952</pubmed></ref> [12, 13]。 | グレンジャー因果性とは異なりベクトル自己回帰モデルを仮定せずに、情報量ベースで向きありの統計的依存性を定量化する指標には移動エントロピー<ref name=Vicente2011><pubmed>20706781</pubmed></ref>[12]がある。なお、因果性を仮定した向きありの統計的依存性を定量化するこれらの指標は、後述する有効結合の推定値としてみなされる場合がある<ref name=Vicente2011 /><ref name=Friston2011><pubmed>22432952</pubmed></ref> [12, 13]。 |