「両眼立体視」の版間の差分

66行目: 66行目:
 脳による両眼視差の処理メカニズムは、主にサルを対象にした行動学研究および単一細胞活動記録や局所電気刺激法を用いた生理学的研究により調べられている<ref name=Parker2007><pubmed>17453018</pubmed></ref><ref name=Roe2012><pubmed>22500626</pubmed></ref><ref name=Rosenberg2023><pubmed>36944312</pubmed></ref>(Parker, 2007; Roe, Chelazzi, Connor, Conway, Fujita, Gallant, Lu, & Vanduffel, 2012; Rosenberg, Thompson, Doudlar, Chang, 2023)。一方、ヒトにおいては、心理学的手法および脳機能イメージング(主に、機能的磁気共鳴画像法)により探究されている<ref name=Welchman2016><pubmed>28532360</pubmed></ref>(Welchman, 2016)。以下、両眼立体視の神経機構について、まず動物実験研究から明らかになったことを記し、続いて、ヒトに関する知見を述べる。
 脳による両眼視差の処理メカニズムは、主にサルを対象にした行動学研究および単一細胞活動記録や局所電気刺激法を用いた生理学的研究により調べられている<ref name=Parker2007><pubmed>17453018</pubmed></ref><ref name=Roe2012><pubmed>22500626</pubmed></ref><ref name=Rosenberg2023><pubmed>36944312</pubmed></ref>(Parker, 2007; Roe, Chelazzi, Connor, Conway, Fujita, Gallant, Lu, & Vanduffel, 2012; Rosenberg, Thompson, Doudlar, Chang, 2023)。一方、ヒトにおいては、心理学的手法および脳機能イメージング(主に、機能的磁気共鳴画像法)により探究されている<ref name=Welchman2016><pubmed>28532360</pubmed></ref>(Welchman, 2016)。以下、両眼立体視の神経機構について、まず動物実験研究から明らかになったことを記し、続いて、ヒトに関する知見を述べる。


[[ファイル:Fujita binocular stereopsis Fig4.png|サムネイル|'''図4. 視差選択性細胞の代表的な6タイプ'''<br>左:サルの大脳皮質で両眼視差選択性細胞が確認されている領野。背側視覚経路、腹側視覚経路の多数の領野に存在する。文献<ref name=藤田2023 />より。]]
[[ファイル:Fujita binocular stereopsis Fig5.png|サムネイル|'''図5. 両眼視差を処理する大脳皮質領野'''<br>左:サルの大脳皮質で両眼視差選択性細胞が確認されている領野。背側視覚経路、腹側視覚経路の多数の領野に存在する。文献<ref name=Fujita2022>Fujita, I. (2022)<br>Cortical mechanism of binocular stereopsis: How our brain constructs the 3D world. The Japanese Journal of Psychonomic Science, 41: 19-27 [DOI: 10.14947/psychono.41.4|[DOI]] </ref><br>
右:ヒトが奥行きのある視覚刺激を見ている時に反応する領野のfMRIデータ。左右の大脳半球を後ろから見たところとその展開図を示す。色のついている場所が反応箇所。異なる色は反応する視野位置の違い(中央円を参照)を示す。図提供:番浩志(情報通信研究機構)]]
[[ファイル:Fujita binocular stereopsis Fig6.png|サムネイル|'''図6. 両眼立体視の神経機構''']]
=== V1野における両眼視差の検出 ===
=== V1野における両眼視差の検出 ===
 左右の目からの情報の単一神経細胞への収斂は大脳皮質一次視覚野(V1野)で初めて起こり、V1野の多くの神経細胞が両眼視差に感受性を持つ<ref name=Barlow1967><pubmed>6065881</pubmed></ref><ref name=Pettigrew1968><pubmed>5721767</pubmed></ref><ref name=Poggio1985><pubmed>4024459</pubmed></ref>(Barlow, Blakemore, & Pettigrew, 1967; Pettigrew, Nikara, & Bishop, 1968; Poggio, Motter, Squatrito, & Trotter, 1985)。どの奥行き範囲の両眼視差に反応するかは神経細胞により異なり、慣習的に、特定の狭い奥行き範囲にだけ反応する神経細胞(TN、 T0、TF)、注視点より近い奥行きに反応する神経細胞(NE)、注視点より遠い奥行きに反応する神経細胞(FA)、注視面にある刺激で抑制される神経細胞(TI)の6タイプに分類される(図4:Poggio, Motter, Squatrito, & Trotter, 1985)<ref name=Poggio1985 />。
 左右の目からの情報の単一神経細胞への収斂は大脳皮質一次視覚野(V1野)で初めて起こり、V1野の多くの神経細胞が両眼視差に感受性を持つ<ref name=Barlow1967><pubmed>6065881</pubmed></ref><ref name=Pettigrew1968><pubmed>5721767</pubmed></ref><ref name=Poggio1985><pubmed>4024459</pubmed></ref>(Barlow, Blakemore, & Pettigrew, 1967; Pettigrew, Nikara, & Bishop, 1968; Poggio, Motter, Squatrito, & Trotter, 1985)。どの奥行き範囲の両眼視差に反応するかは神経細胞により異なり、慣習的に、特定の狭い奥行き範囲にだけ反応する神経細胞(TN、 T0、TF)、注視点より近い奥行きに反応する神経細胞(NE)、注視点より遠い奥行きに反応する神経細胞(FA)、注視面にある刺激で抑制される神経細胞(TI)の6タイプに分類される(図4:Poggio, Motter, Squatrito, & Trotter, 1985)<ref name=Poggio1985 />。