「スリングショット」の版間の差分

18行目: 18行目:
 コフィリンは、主にLIMキナーゼ(LIMK)による3番目のセリン残基のリン酸化により不活性化されるが、SSHによって脱リン酸化されると再活性化される('''図1''')。コフィリンのリン酸化と脱リン酸化による活性制御は、アクチン骨格の再構築を制御し、細胞の形態や機能発現に重要な役割を担っていると考えられ、LIMKとSSHは多様なシグナル伝達経路によって活性が制御されている。SSHにおいても、結合タンパク質やリン酸化修飾による調節を受けており、細胞の形態・機能発現や様々な疾患に関与することが明らかにされている<ref name=Mizuno2013></ref> <ref name=Ohashi2015><pubmed>25864508</pubmed></ref>[2][3]。
 コフィリンは、主にLIMキナーゼ(LIMK)による3番目のセリン残基のリン酸化により不活性化されるが、SSHによって脱リン酸化されると再活性化される('''図1''')。コフィリンのリン酸化と脱リン酸化による活性制御は、アクチン骨格の再構築を制御し、細胞の形態や機能発現に重要な役割を担っていると考えられ、LIMKとSSHは多様なシグナル伝達経路によって活性が制御されている。SSHにおいても、結合タンパク質やリン酸化修飾による調節を受けており、細胞の形態・機能発現や様々な疾患に関与することが明らかにされている<ref name=Mizuno2013></ref> <ref name=Ohashi2015><pubmed>25864508</pubmed></ref>[2][3]。


[[ファイル:Ohashi SSH Fig2.png|サムネイル|'''図2. SSHファミリーの構造と機能制御に関与する部位'''<br>リン酸化を受けるセリン残基、アクチン線維との結合部位、リン酸化コフィリン認識部位、SQSTM1/p62結合部位をSSH1に示す。 A: Aドメイン、B: Bドメイン、P: ホスファターゼドメイン、S: セリンリッチドメイン]]
== サブファミリーと構造 ==
== サブファミリーと構造 ==
 SSHは、哺乳類で類似した3種類のSSH1, SSH2, SSH3が存在しファミリーを形成している。各々、スプライシングバリアントが存在し、一番長い転写産物をSSH1L, SSH2L, SSH3Lと区別する場合があるが[1]、本項ではこれら一番長いものをSSH1, SSH2, SSH3と表記する。それらはN末端側にA, Bと名付けられたファミリー間で保存された領域があり、続いてフォスファターゼドメインを持つ(図2)。フォスファターゼドメインは、リン酸化されたチロシン残基とセリン/スレオニン残基の両方を脱リン酸化する二重特異性脱リン酸化酵素に類似した配列を有している。SSH1がコフィリンに対する脱リン酸化活性を発揮するためにはN末端のA,Bドメインが必要である<ref name=Kurita2008><pubmed>18809681</pubmed></ref> [4]。フォスファターゼドメインに続くC末端側は、SSH1, SSH2とSSH3では異なり、SSH1とSSH2はC末端付近にリン酸化修飾を受けるセリンに富む短い領域が存在するが、SSH3はそれらに比べてC末端領域は短く、セリンに富む短い領域は存在しない<ref name=Mizuno2013></ref> [2]。
 SSHは、哺乳類で類似した3種類のSSH1, SSH2, SSH3が存在しファミリーを形成している。各々、スプライシングバリアントが存在し、一番長い転写産物をSSH1L, SSH2L, SSH3Lと区別する場合があるが[1]、本項ではこれら一番長いものをSSH1, SSH2, SSH3と表記する。それらはN末端側にA, Bと名付けられたファミリー間で保存された領域があり、続いてフォスファターゼドメインを持つ('''図2''')。フォスファターゼドメインは、リン酸化されたチロシン残基とセリン/スレオニン残基の両方を脱リン酸化する二重特異性脱リン酸化酵素に類似した配列を有している。SSH1がコフィリンに対する脱リン酸化活性を発揮するためにはN末端のA,Bドメインが必要である<ref name=Kurita2008><pubmed>18809681</pubmed></ref> [4]。フォスファターゼドメインに続くC末端側は、SSH1, SSH2とSSH3では異なり、SSH1とSSH2はC末端付近にリン酸化修飾を受けるセリンに富む短い領域が存在するが、SSH3はそれらに比べてC末端領域は短く、セリンに富む短い領域は存在しない<ref name=Mizuno2013></ref> [2]。


 SSH1は、フォスファターゼドメインのC末端の近くにオートファジーの受容体タンパク質であるSQSTM1/p62タンパク質が結合する領域が存在する<ref name=Fang2021><pubmed>33044112</pubmed></ref>[5]。また、SSH1とSSH2はアクチン線維に結合し、SSH1の分子内に少なくとも3箇所のアクチン線維と結合するモチーフを持つ(図2) <ref name=Kurita2008></ref>[4]。SSH3はアクチン線維との結合能は持たない<ref name=Ohta2003><pubmed>14531860</pubmed></ref>[6]。SSH1とSSH2は、N末端Aドメインが触媒部位をブロックして活性抑制に働く部位であり、それに続くBドメインがコフィリンを結合して基質特異性を決めている領域であることが示されている(図2) <ref name=Yang2018><pubmed>30154244</pubmed></ref>。また、アクチン線維がSSH2のAドメインに結合して、その活性抑制を解除することが示されている(図2) <ref name=Yang2018></ref>[7]。
 SSH1は、フォスファターゼドメインのC末端の近くにオートファジーの受容体タンパク質であるSQSTM1/p62タンパク質が結合する領域が存在する<ref name=Fang2021><pubmed>33044112</pubmed></ref>[5]。また、SSH1とSSH2はアクチン線維に結合し、SSH1の分子内に少なくとも3箇所のアクチン線維と結合するモチーフを持つ(図2) <ref name=Kurita2008></ref>[4]。SSH3はアクチン線維との結合能は持たない<ref name=Ohta2003><pubmed>14531860</pubmed></ref>[6]。SSH1とSSH2は、N末端Aドメインが触媒部位をブロックして活性抑制に働く部位であり、それに続くBドメインがコフィリンを結合して基質特異性を決めている領域であることが示されている(図2) <ref name=Yang2018><pubmed>30154244</pubmed></ref>。また、アクチン線維がSSH2のAドメインに結合して、その活性抑制を解除することが示されている(図2) <ref name=Yang2018></ref>[7]。