「膵臓転写因子1A」の版間の差分

編集の要約なし
135行目: 135行目:
 マウス視床下部におけるPtf1a機能喪失により、脳の性分化に関与するキスペプチンニューロン数が顕著に減少し、性特異的行動および性腺発達に異常を引き起こす<ref name=Fujiyama2018><pubmed>29719267</pubmed></ref>[Fujiyama et al., Cel Rep 201840]。Ptf1a陽性の神経前駆細胞は内側視索前野や腹内側核などを含む複数の視床下部神経核ニューロン系譜を形成するが、集団としての生理的機能は不明である。
 マウス視床下部におけるPtf1a機能喪失により、脳の性分化に関与するキスペプチンニューロン数が顕著に減少し、性特異的行動および性腺発達に異常を引き起こす<ref name=Fujiyama2018><pubmed>29719267</pubmed></ref>[Fujiyama et al., Cel Rep 201840]。Ptf1a陽性の神経前駆細胞は内側視索前野や腹内側核などを含む複数の視床下部神経核ニューロン系譜を形成するが、集団としての生理的機能は不明である。


[[ファイル:Fujiyama Ptf1a Fig6.png|サムネイル|'''図6. マウスにおける膵臓発達'''<br>未分化膵原基からの膵組織の分化プロセス。文献<ref name=Stanger2013><pubmed>23622126</pubmed></ref>より改変。]]
====膵臓形成====
====膵臓形成====
 胎生期膵形成初期において、外分泌細胞系列の分化を促進し、ランゲルハンス島内分泌細胞や導管の前駆細胞の運命決定にも関与する。   
 胎生期膵形成初期において、外分泌細胞系列の分化を促進し、ランゲルハンス島内分泌細胞や導管の前駆細胞の運命決定にも関与する。   
Ptf1a欠損マウスでは膵臓の外分泌細胞が欠落し、膵器官も無形成となる<ref name=Kawaguchi2002><pubmed>11850621</pubmed></ref><ref name=Sellick2004><pubmed>15133510</pubmed></ref>[Kawaguchi 2002, Sellick 20045,6]。またRBPJとの相互作用が膵臓の正常発生に重要である<ref name=Masui2007><pubmed>17289922</pubmed></ref>[Masui et al., Genes Dev 200714]。さらに、Ptf1a遺伝子の発現量の多寡が膵臓の分化、成長、総β細胞数、島形態形成、および内分泌機能に影響を与えることが示されている<ref name=Fukuda2008><pubmed>18252893</pubmed></ref>[Diabetes 2008, Fukuda et al.82]。成体の外分泌腺房細胞におけるPtf1a欠失が、ERストレスを介してアポトーシスを引き起こすことも知られている<ref name=Sakikubo2018><pubmed>29991721</pubmed></ref>[Sci Rep 2018, Sakikubo et al.83]。
Ptf1a欠損マウスでは膵臓の外分泌細胞が欠落し、膵器官も無形成となる<ref name=Kawaguchi2002><pubmed>11850621</pubmed></ref><ref name=Sellick2004><pubmed>15133510</pubmed></ref>[Kawaguchi 2002, Sellick 20045,6]。またRBPJとの相互作用が膵臓の正常発生に重要である<ref name=Masui2007><pubmed>17289922</pubmed></ref>[Masui et al., Genes Dev 200714]。さらに、Ptf1a遺伝子の発現量の多寡が膵臓の分化、成長、総β細胞数、島形態形成、および内分泌機能に影響を与えることが示されている<ref name=Fukuda2008><pubmed>18252893</pubmed></ref>[Diabetes 2008, Fukuda et al.82]。成体の外分泌腺房細胞におけるPtf1a欠失が、ERストレスを介してアポトーシスを引き起こすことも知られている<ref name=Sakikubo2018><pubmed>29991721</pubmed></ref>[Sci Rep 2018, Sakikubo et al.83]。
 PTF1Aによって膵運命を決定され原腸から発芽した未分化膵原基は、樹状構造を形成し先端部分(tip領域)と幹部分(trunk領域)に分かれる('''図5''')<ref name=Stanger2013><pubmed>23622126</pubmed></ref><ref name=Pan2011><pubmed>21337462</pubmed></ref>[追加引用1、2]。転写因子PTF1AとNKX6.1が互いに抑制し合うcross-repressiveな作用により、これらの領域で細胞分化の運命決定がなされる<ref name=Schaffer2010><pubmed>21145504</pubmed></ref>[Schaffer et al., Developmental Cell 2010]。外分泌組織を形成するtip領域の膵外分泌(腺房)前駆細胞ではPTF1AがDll1の発現を活性化し、このDll1によって隣接細胞のNotch経路が活性化されHes1が誘導されることで内分泌細胞への分化が抑制される側方抑制機構が働く<ref name=AhnfeltRonne2012><pubmed>22745315</pubmed></ref>[Ahnfelt-Rønne et al., Development 2012]。一方NKX6.1が発現するtrunk領域の細胞では隣接細胞の外分泌細胞分化が抑制され、Notchシグナルと協調して内分泌・導管分化が促進される<ref name=Schaffer2010><pubmed>21145504</pubmed></ref>[Schaffer et al., Developmental Cell 2010]。


 転写因子PTF1AとNKX6.1が互いに抑制し合うcross-repressiveな作用により、先端(tip)領域と基部(trunk)領域の境界で細胞分化の運命決定がなされる<ref name=Schaffer2010><pubmed>21145504</pubmed></ref>[Schaffer et al., Developmental Cell 201061]。Tip領域の膵外分泌(腺房)前駆細胞ではPTF1AがDll1の発現を活性化し、このDll1によって隣接細胞のNotch経路が活性化されHes1が誘導されることで内分泌細胞への分化が抑制される側方抑制機構が働く<ref name=AhnfeltRonne2012><pubmed>22745315</pubmed></ref>[Ahnfelt-Rønne et al., Development 201262]。NKX6.1が発現するtrunk領域の細胞では、Notchシグナルと協調して内分泌・導管分化が促進される<ref name=Schaffer2010><pubmed>21145504</pubmed></ref>[Schaffer et al., Developmental Cell 201061]。
 転写因子PTF1AとNKX6.1が互いに抑制し合うcross-repressiveな作用により、先端(tip)領域と基部(trunk)領域の境界で細胞分化の運命決定がなされる<ref name=Schaffer2010><pubmed>21145504</pubmed></ref>[Schaffer et al., Developmental Cell 201061]。Tip領域の膵外分泌(腺房)前駆細胞ではPTF1AがDll1の発現を活性化し、このDll1によって隣接細胞のNotch経路が活性化されHes1が誘導されることで内分泌細胞への分化が抑制される側方抑制機構が働く<ref name=AhnfeltRonne2012><pubmed>22745315</pubmed></ref>[Ahnfelt-Rønne et al., Development 201262]。NKX6.1が発現するtrunk領域の細胞では、Notchシグナルと協調して内分泌・導管分化が促進される<ref name=Schaffer2010><pubmed>21145504</pubmed></ref>[Schaffer et al., Developmental Cell 201061]。