「語彙」の版間の差分

10 バイト追加 、 2012年5月20日 (日)
31行目: 31行目:
 そのほか、ある単語(ターゲットもしくはプローブ)の理解が直前に別の単語(プライム)などを提示することによって促進されたり抑制されたりする現象も知られている。これは語彙的[[プライミング]]効果(lexical priming effect)と呼ばれるもので、ターゲットに対して語彙判断課題などを行うことで測定する。たとえばプローブとターゲットのあいだに意味的関連がある場合、ターゲットの理解は促進されることが知られている<ref><pubmed> 5134329 </pubmed></ref>。
 そのほか、ある単語(ターゲットもしくはプローブ)の理解が直前に別の単語(プライム)などを提示することによって促進されたり抑制されたりする現象も知られている。これは語彙的[[プライミング]]効果(lexical priming effect)と呼ばれるもので、ターゲットに対して語彙判断課題などを行うことで測定する。たとえばプローブとターゲットのあいだに意味的関連がある場合、ターゲットの理解は促進されることが知られている<ref><pubmed> 5134329 </pubmed></ref>。


== 語彙アクセスのモデル  ==
=== 語彙アクセスのモデル  ===


=== 単語認知に関するモデル  ===
==== 単語認知に関するモデル  ====


==== ロゴジェン・モデル ====
===== ロゴジェン・モデル =====
 ことばを見聞きしたとき、われわれは苦も無く語彙情報にアクセスして意味を理解する。こうした単語認知研究の初期における重要なモデルとして、Mortonのロゴジェン・モデル(logogen model)<ref> '''J Morton''' <br>Interaction of information in word recognition.<br> ''Psychol Rev'':1983, 76();165-178 </ref>がある。このモデルではメンタル・レキシコンの構成ユニットはロゴジェンと呼ばれ、個々の単語に対応する。ロゴジェンは感覚入力(たとえば単語の視覚刺激)に対して応答するが、この応答値がある閾値を超えたときにのみ「対応する単語が認識された」ものとする。さらに、ロゴジェンは単語の使用頻度や文脈の効果を受け、それによって閾値が低下するという特徴を持つ。以上がロゴジェン・モデルの概要である。このモデルは出現頻度効果や文脈効果による語彙アクセスへの影響をある程度定量的に説明することができる。  
 ことばを見聞きしたとき、われわれは苦も無く語彙情報にアクセスして意味を理解する。こうした単語認知研究の初期における重要なモデルとして、Mortonのロゴジェン・モデル(logogen model)<ref> '''J Morton''' <br>Interaction of information in word recognition.<br> ''Psychol Rev'':1983, 76();165-178 </ref>がある。このモデルではメンタル・レキシコンの構成ユニットはロゴジェンと呼ばれ、個々の単語に対応する。ロゴジェンは感覚入力(たとえば単語の視覚刺激)に対して応答するが、この応答値がある閾値を超えたときにのみ「対応する単語が認識された」ものとする。さらに、ロゴジェンは単語の使用頻度や文脈の効果を受け、それによって閾値が低下するという特徴を持つ。以上がロゴジェン・モデルの概要である。このモデルは出現頻度効果や文脈効果による語彙アクセスへの影響をある程度定量的に説明することができる。  


====相互活性化モデル====
=====相互活性化モデル=====
 ロゴジェン・モデルに続く重要な単語認知モデルとしては、相互活性化(interactive activation: IA)モデル<ref><pubmed> 7058229 </pubmed></ref>が挙げられる。IAモデルは特徴レベル・文字レベル・単語レベルの3つの階層から成る[[ニューラルネットワーク・モデル]]である。ロゴジェン・モデルとは異なり、IAモデルには上述した3つのレベルごとに構成ユニットが存在する。たとえば垂直な線分に対応する特徴ユニット、“A”の文字ユニット、“CAT”の単語ユニットなどがそれぞれの層を構成するのである。特徴ユニットは、対応する特徴を含む文字ユニットに対しては興奮性の、そうでない文字ユニットには抑制性の結合を持つ。文字ユニットと単語ユニットは相互に結合しており、前者の文字が後者の単語に含まれる場合(例.“T”と“TIME”)には両者の結合は興奮性、そうでない場合には抑制性である。また単語レベルのユニット間には強い相互抑制が存在する。IAモデルではこれらの結合を通じてレベル内およびレベル間の相互作用が生じる。単語の視覚入力を最初に受けるのは特徴ユニットであるが、レベル間の結合があるためにその後の処理は各階層で並列的に進行する。またIAモデルの構成ユニットは閾値を持たないが、入力と合う特定の単語ユニットが最も強く活動することで単語認知が実現される。IAモデルもロゴジェン・モデルと同様、頻度や文脈による単語認知の促進効果を再現することが可能である。さらに高次(単語レベル)から低次(文字レベル)へのフィードバックを組み込むことで、先述した単語優位効果も説明できるようになっている。  
 ロゴジェン・モデルに続く重要な単語認知モデルとしては、相互活性化(interactive activation: IA)モデル<ref><pubmed> 7058229 </pubmed></ref>が挙げられる。IAモデルは特徴レベル・文字レベル・単語レベルの3つの階層から成る[[ニューラルネットワーク・モデル]]である。ロゴジェン・モデルとは異なり、IAモデルには上述した3つのレベルごとに構成ユニットが存在する。たとえば垂直な線分に対応する特徴ユニット、“A”の文字ユニット、“CAT”の単語ユニットなどがそれぞれの層を構成するのである。特徴ユニットは、対応する特徴を含む文字ユニットに対しては興奮性の、そうでない文字ユニットには抑制性の結合を持つ。文字ユニットと単語ユニットは相互に結合しており、前者の文字が後者の単語に含まれる場合(例.“T”と“TIME”)には両者の結合は興奮性、そうでない場合には抑制性である。また単語レベルのユニット間には強い相互抑制が存在する。IAモデルではこれらの結合を通じてレベル内およびレベル間の相互作用が生じる。単語の視覚入力を最初に受けるのは特徴ユニットであるが、レベル間の結合があるためにその後の処理は各階層で並列的に進行する。またIAモデルの構成ユニットは閾値を持たないが、入力と合う特定の単語ユニットが最も強く活動することで単語認知が実現される。IAモデルもロゴジェン・モデルと同様、頻度や文脈による単語認知の促進効果を再現することが可能である。さらに高次(単語レベル)から低次(文字レベル)へのフィードバックを組み込むことで、先述した単語優位効果も説明できるようになっている。  


====コホートモデル====
=====コホートモデル=====
 単語の聴覚的認知に関してはコホート(Cohort)・モデル<ref><pubmed> 3581730 </pubmed></ref>と呼ばれる概念モデルが有名である。このモデルが提唱する枠組みでは、単語の聴覚的認知は以下3つのステージに大別される。単語(例.stack)が聴覚的に入力されると、1)最初の100-150ミリ秒時点での音素系列(例.sta-)と合致する単語表現(例.stab、stack、stagger…)がまず全て活性化され、2)継起する音や文脈に基づいて候補が絞られていき、3)最終的にひとつの単語(stack)が特定される。この最初に活性化される単語群を語頭コホート(word-initial cohort)という。コホートとはもともとローマの歩兵隊を指すことばであり、単語の大群が徐々に選択されていく過程を軍隊の行進になぞらえているのである。コホート・モデルは、たとえば以下の実験によって支持される。この実験では被験者にcaptain(船長)あるいはcaptive(捕虜)のような語が音声で提示されていき、その途中で視覚的に表示される語の語彙判断が求められた。このとき、音声が「capt-」の時点で視覚刺激が提示されると、captainおよびcaptiveと意味的に関連する「boat(船)」「guard(看守)」といった語に対する反応が促進されたのである。これは語彙的[[プライミング効果]]の一種であり、聴覚提示が「capt-」の時点ではcaptainとcaptiveが共に活性化されていることを示唆するものといえる。McClellandとElmanの提案したTRACE <ref><pubmed> 3753912 </pubmed></ref>というニューラルネットワーク・モデルはコホート・モデルの枠組みと合致しており、聴覚提示される単語が複数の候補から徐々に選択されていく過程をシミュレートすることができる。
 単語の聴覚的認知に関してはコホート(Cohort)・モデル<ref><pubmed> 3581730 </pubmed></ref>と呼ばれる概念モデルが有名である。このモデルが提唱する枠組みでは、単語の聴覚的認知は以下3つのステージに大別される。単語(例.stack)が聴覚的に入力されると、1)最初の100-150ミリ秒時点での音素系列(例.sta-)と合致する単語表現(例.stab、stack、stagger…)がまず全て活性化され、2)継起する音や文脈に基づいて候補が絞られていき、3)最終的にひとつの単語(stack)が特定される。この最初に活性化される単語群を語頭コホート(word-initial cohort)という。コホートとはもともとローマの歩兵隊を指すことばであり、単語の大群が徐々に選択されていく過程を軍隊の行進になぞらえているのである。コホート・モデルは、たとえば以下の実験によって支持される。この実験では被験者にcaptain(船長)あるいはcaptive(捕虜)のような語が音声で提示されていき、その途中で視覚的に表示される語の語彙判断が求められた。このとき、音声が「capt-」の時点で視覚刺激が提示されると、captainおよびcaptiveと意味的に関連する「boat(船)」「guard(看守)」といった語に対する反応が促進されたのである。これは語彙的[[プライミング効果]]の一種であり、聴覚提示が「capt-」の時点ではcaptainとcaptiveが共に活性化されていることを示唆するものといえる。McClellandとElmanの提案したTRACE <ref><pubmed> 3753912 </pubmed></ref>というニューラルネットワーク・モデルはコホート・モデルの枠組みと合致しており、聴覚提示される単語が複数の候補から徐々に選択されていく過程をシミュレートすることができる。