マーの小脳理論
川人光男 株式会社 国際電気通信基礎技術研究所 脳情報通信総合研究所 DOI XXXX/XXXX 原稿受付日:2018年7月xx日 原稿完成日:2018年xx月XX日
英語名: David Marr’s theory of cerebellum
David Marrは、1960年代に明らかになった小脳の生理学と解剖学のデータに基づいて、小脳に関する運動学習理論を提案した。プルキンエ細胞の平行線維入力と登上繊維入力の連合による教師あり学習のモデルである。教師あり運動学習以外のモデルの主要な要素、LTP、プルキンエ細胞が小脳で唯一のシナプス可塑性の座、離散信号によるパターン識別、顆粒細胞層のコドン仮説などは、現在の実験データや主要な理論から考えて、ほぼ否定されるか、もしくは支持されない。しかし、この理論は小脳の理論と実験研究の進展に大きな影響を及ぼした。
理論の概要
小脳の神経回路は、神経生理学と解剖学の研究により1960年代半ばには概要が解明されたが[1]、その機能を統一的に説明する理論はなかった。David Marrは、Giles S Brindleyをメンターとして執筆した博士論文の一部として小脳皮質の理論を提案し、1969年にJournal of Physiology誌に発表した[2]。理論では、小脳皮質の唯一の出力細胞であるプルキンエ細胞への2つの主要な興奮性シナプス入力である平行線維入力と登上線維入力の間に連合的なシナプス可塑性を仮定した。小脳皮質は、苔状線維入力から運動に必要な運動司令を計算することを、上記のシナプス可塑性に基づいて学習する神経回路であると提案した。苔状線維入力は運動の文脈信号を提供し、顆粒細胞でスパース符号化されて、平行線維入力となり、プルキンエ細胞を興奮させる。一方、登上線維入力は、大脳からの運動司令の教師信号を提供し、プルキンエ細胞が、運動の文脈情報から適切な運動司令を連合できるような、教師あり学習が生じていると提案した。
理論の要素の評価
理論の6つの主要な要素について、詳しく述べるとともに、現在までに得られた実験データや、最近のモデルの進歩から考えて、どのように評価されるかを順に説明する。
運動学習の理論
小脳皮質が運動学習において重要な役割を果たしていることに関しては、大多数の研究者の合意が得られている[3]。小脳の機能に関する他の主要な仮説、タイミング制御、リズム説とも背反するものではないことが理論的に明らかにされてきた[4]。
登上線維による教師あり学習
最近の計算論的神経科学では、学習を教師あり学習、強化学習、教師無し学習に分類する[5]。ニューロンが教師無し学習を実現しようとすれば、ヘッブ則に基づいてシナプス荷重を変更する必要がある。つまり、シナプスに入力があり、後シナプスニューロンが発火したとき、そのシナプスが選択的に増強される。これが成立するためには、ニューロンが発火したという情報をシナプスまで伝達する必要がある。大脳皮質と海馬の錐体細胞では、軸索初節から樹状突起の末端部に向けて逆伝搬する活動電位がこの情報伝搬を実現している。強化学習は、このヘッブ則に加えて、ドーパミンなどのモノアミンがシナプス可塑性を修飾する機構により実現されている。しかし、プルキンエ細胞では樹状突起の分岐が著しいため、樹状突起の末梢側が電気的に大きな負荷になるなどの理由で、活動電位逆伝搬が起きない。また錐体細胞でシナプス前活動と逆伝搬した活動電位の同時性検出を司るNMDA受容体が存在しない。つまり、ヘッブ則を実現することができない。その一方で、プルキンエ細胞では登上線維が活動すると、樹状突起で大きな脱分極が引き起こされる。その数十から100ミリ秒程度前に平行線維入力があったスパインでは、代謝型グルタミン酸受容体の活性化を経由してイノシトール3リン酸がゆっくりと増加する。脱分極でスパイン内に流入したカルシウムイオンとイノシトール3リン酸増加の同時性検出が、カルシウムを貯蔵している小胞体のイノシトール3リン酸受容体で行われる。つまり平行線維入力と数十ミリ秒程度遅れた登上線維入力の同時性が小胞体からのカルシウム誘導カルシウム放出をおこして、スパイン内のカルシウム濃度がモルレベルで増加し、シナプス特異的、また2種類の興奮性入力の間で連合的にシナプス可塑性が生じる[6,7]。まとめると、理論で提案された教師あり学習は、プルキンエ細胞の電気生理と分子神経科学および最近のモデル研究からも支持されている。
長期増強か長期抑圧か
David Marrは、平行線維入力と登上線維入力が同時に興奮すると、活動した平行線維シナプスが増強されると提案した。少し遅れて、Albusや伊藤正男は、シナプスが減弱すると提案した[8,9]。実験的に後者が正しいことが示された[10]。
プルキンエ細胞が唯一のシナプス可塑性の座
David Marrは、小脳では、プルキンエ細胞の平行線維入力に唯一のシナプス可塑性があると提案したが、プルキンエ細胞の抑制性シナプス、皮質の分子層の介在ニューロン、顆粒細胞、小脳核ニューロンにもシナプス可塑性があることが明らかになった[11]。
離散信号によるパターン識別
機械学習の教師ありアルゴリズムの目的は分類と回帰に大別される。前者は信号パターンを複数のクラスに分類する事が目的である。一方、回帰では入力信号パターンから、連続値の出力を近似することが目的である。David Marrは、小脳の役割は分類の教師あり連合学習であると特徴付けたが、その後の神経科学のデータや理論は、回帰であることを示している[12,13,14,15]。具体的には、例えば、サルの追従眼球運動中の傍片葉プルキンエ細胞の瞬時発火頻度は、運動のキネマティクスや運動司令をよく表している[12,13]。また、小脳内部モデル理論では、運動制御対象の順モデルや逆モデルが学習で獲得されると提案するが、これは回帰問題である[14,15]。
顆粒細胞層のコドン表現
教師ありのシナプス可塑性により、運動学習が行われると言う可能性は、GS Brindleyがすでに言及していたので、David Marrの小脳理論の最も独創的な部分は、顆粒細胞によるコドン表現である。小脳顆粒細胞はヒトでは500億個あり、脳内の他の全ての種類の神経細胞の総和より多い。4から5個の小さな樹状突起を持ち、同じ数の苔状線維から興奮性シナプス入力を受ける。苔状線維の総数は顆粒細胞の総数の200分の1である。コドン仮説では、4から5本の苔状線維のうち、ある特定の組み合わせが興奮したときのみに顆粒細胞が発火すると考える。現在の計算理論から考えると、コドン仮説はごく少数の顆粒細胞のみが発火するという意味でスパース符号化、苔状線維の符号から200倍の数の顆粒細胞の空間に拡張した符号化expansion codingと言える。これによって、多数の顆粒細胞が同時に興奮する文脈の数を減らし、小脳皮質の入力と出力の間の連想記憶の容量を著しく増大できると考えた。 最近10年間で覚醒あるいは行動下の動物で顆粒細胞から細胞内記録やパッチクランプをする事が可能になり、様々な小脳部位と感覚入力に対する顆粒細胞の応答が調べられた。その結果、コドン仮説はほぼ否定されたと考えられる[16]。まず、顆粒細胞は、一つの苔状線維の発火だけで高頻度の発火が可能で、出力の発火頻度は入力の発火頻度とほぼ線形の関係にある[17,18,19]。発火があるかないかの0−1表現ではなく、例えばシナプス入力頻度から頭部回転速度が再現されることなどからもわかるように、瞬時発火頻度で情報を符号化していることが分かった[19,20]。 それではコドン仮説は、理論的にも全く無意味なのだろうか。一概にそうとも言い切れない。上記の実験データは、前庭系や皮膚感覚などの一種類のモダリティだけを直接受ける系統発生的に古い小脳部位か、もしくは除脳標本を用いて得られている。石川太郎らは、単一の顆粒細胞に体性感覚、聴覚、視覚の異なるモダリティを伝える、大脳皮質由来と思われる苔状線維入力が収束している例を発見し、組み合わせ刺激の場合の発火頻度が非線形性を示すことを明らかにした[21]。苔状線維の起始細胞からプルキンエ細胞までの前向きの神経回路は浅い3層神経回路となっている。舟橋賢一は、中間層、つまり顆粒細胞の数が十分大きく、シナプスの加重を自由に取れるなら任意の関数を近似できることを数学的に証明した[22]。例えば非線形特性を持つ運動制御対象の逆モデルや順モデルを獲得するために必要となる計算能力である。顆粒細胞のシナプス可塑性に制限があるなら、この近似能力をあげるためには、複数の入力の組み合わせからなる様々な非線形関数が顆粒細胞で用意されている必要がある。0−1表現ではなく瞬時発火頻度表現で、分類ではなく回帰、連想記憶の容量ではなく内部モデルの精度の違いはあるとはいえ、理論の本質的な精神は生き残っていると言えるのかもしれない。
小脳研究に与えたインパクト
小脳研究に与えたインパクトは、理論に対しても実験に対しても大きかったが、David Marrが視覚の計算理論の研究に転じ、夭折したことから、支持する側からも、反対する側からもその予測が皮相的に取り扱われる嫌いがあったことは否めない。コドン仮説などはその典型である。理論のいくつかの要素を現在の実験データと理論に照らし合わせて、丁寧に再評価する時期に来ていると思われる。
関連項目
• 視運動性眼振 • 前庭動眼反射 • 小脳によるタイミング制御 • 小脳 • 瞬膜反射の条件付け
外部リンク
参考文献
1. Eccles JC, Ito M, Szentàgothai J
The Cerebellum as a Neuronal Machine.
Springer, Berlin.: 1967, 335 [WorldCat.org]
2. D Marr
A theory of cerebellar cortex.
J. Physiol. (Lond.): 1969, 202(2); 437-70 [PubMed:5784296] [WorldCat.org]
3. Koziol LF, Budding D, Andreasen N, D'Arrigo S, Bulgheroni S, Imamizu H, Ito M, Manto M, Marvel C, Parker K, Pezzulo G, Ramnani N, Riva D, Schmahmann J, Vandervert L, Yamazaki T
Consensus paper: the cerebellum's role in movement and cognition.
Cerebellum.: 2014, 13(1);151-77 [PubMed:23996631] [WorldCat.org]
4. Tokuda I, Hoang H, Kawato M
New insights into olivo-cerebellar circuits for learning from a small training sample.
Current Opinion in Neurobiology.: 2017, 46; 58-67 [PubMed: 28841437] [WorldCat.org]
5. Doya K
What are the computations of the cerebellum, the basal ganglia and the cerebral cortex?
Neural networks.: 1999, 12 (7-8); 961-974 [PubMed: 12662639] [WorldCat.org]
6. Doi T, Kuroda S, Michikawa T, Kawato M
Insoitol, 1, 4, 5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar purkinje cells.
Journal of Neuroscience.: 2005, 25; 950-961 [PubMed: 15673676]
7. Kawato M, Kuroda S, Schweighofer N
Cerebellar supervised learning revisited: biophysical modeling and degrees-of-freedom control.
Current Opinion in Neurobiology.: 2011, 21(5); 791-800 [PubMed: 21665461] [WorldCat.org]
8. Albus J
A theory of cerebellar function.
Math Biosci.: 1974, 10; 25-61 [WorldCat.org]
9. Ito M
Neurophysiological aspects of the cerebellar motor control system.
Int J Neurol.: 1970, 7; 162-176 [PubMed: 5499516] [WorldCat.org]
10. Ito M, Sakurai M, Tongroach P
Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells.
J. Physiol.: 1982, 324; 113-134 [PubMed: 7097592] [WorldCat.org]
11. Hirano T
Long-term depression and other synaptic plasticity in the cerebellum.
Proc Jpn Acad Ser B Phys Biol Sci.: 2013, 89(5); 183-95 [PubMed: 23666089] [WorldCat.org]
12. Shidara M, Kawano K, Gomi H, Kawato M
Inverse dynamics model eye movement control by Purkinje cells in the cerebellum.
Nature.: 1993, 365; 50-52 [PubMed: 8361536] [WorldCat.org]
13. Kawano K
Ocular tracking: behavior and neurophysiology.
Current Opinion in Neurobiology.: 1999, 9; 467-473 [PubMed: 10448153] [WorldCat.org]
14. Kawato M, Furukawa K, Suzuki R
A hierarchical neural-network model for control and learning of voluntary movement.
Biological Cybernetics.:1987, 57; 169-185 [PubMed: 3676355] [WorldCat.org]
15. Kawato M
Internal models for motor control and trajectory planning.
Current Opinion in Neurobiology.: 1999, 9; 718-727 [PubMed: 10607637] [WorldCat.org]
16. Spanne A, Jörntell H
Questioning the role of sparse coding in the brain.
Trends in Neurosciences.: 2015, 38(7); 417-27 [PubMed: 26093844] [WorldCat.org]
17. Jörntell H, Ekerot CF
Properties of somatosensory synaptic integration in cerebellar granule cells in vivo.
The Journal of Neuroscience.: 2006, 26(45); 11786 –11797 [PubMed: 17093099] [WorldCat.org]
18. Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, Häusser M
High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons.
Nature.: 2007, 450(7173); 1245–1248. [PubMed: 18097412] [WorldCat.org]
19. Arenz A, Silver RA, Schaefer AT, Margrie TW
The contribution of single synapses to sensory representation in vivo.
Science.: 2008, 321(5891): 977–980. [PubMed:18703744] [WorldCat.org]
20. Bengtsson F, Jörntell H
Sensory transmission in cerebellar granule cells relies on similarly coded mossy fiber inputs.
Proc Natl Acad Sci USA.: 2009, 106(7); 2389-94. [PubMed:19164536] [WorldCat.org]
21. Ishikawa T, Shimuta M, Häusser M
Multimodal sensory integration in single cerebellar granule cells in vivo.
eLife.: 2015, 4; e12916. [PubMed:26714108] [WorldCat.org]
22. Funahashi. K
On the approximate realization of continuous mappings by neural networks.
Neural Networks.: 1989, 2(3); 183-192 [WorldCat.org]