[3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32]
- ↑
Reczek, D., Berryman, M., & Bretscher, A. (1997).
Identification of EBP50: A PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. The Journal of cell biology, 139(1), 169-79. [PubMed:9314537] [PMC] [WorldCat] [DOI] - ↑
Niggli, V., Andréoli, C., Roy, C., & Mangeat, P. (1995).
Identification of a phosphatidylinositol-4,5-bisphosphate-binding domain in the N-terminal region of ezrin. FEBS letters, 376(3), 172-6. [PubMed:7498535] [WorldCat] [DOI] - ↑
Ellis, H.M., & Horvitz, H.R. (1986).
Genetic control of programmed cell death in the nematode C. elegans. Cell, 44(6), 817-29. [PubMed:3955651] [WorldCat] [DOI] - ↑
Yuan, J., & Horvitz, H.R. (1992).
The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development (Cambridge, England), 116(2), 309-20. [PubMed:1286611] [WorldCat] [DOI] - ↑
Liu, X., Kim, C.N., Yang, J., Jemmerson, R., & Wang, X. (1996).
Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 86(1), 147-57. [PubMed:8689682] [WorldCat] [DOI] - ↑
Zou, H., Henzel, W.J., Liu, X., Lutschg, A., & Wang, X. (1997).
Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell, 90(3), 405-13. [PubMed:9267021] [WorldCat] [DOI] - ↑
Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., & Wang, X. (1997).
Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91(4), 479-89. [PubMed:9390557] [WorldCat] [DOI] - ↑
Rodriguez, A., Oliver, H., Zou, H., Chen, P., Wang, X., & Abrams, J.M. (1999).
Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nature cell biology, 1(5), 272-9. [PubMed:10559939] [WorldCat] [DOI] - ↑
Zhou, L., Song, Z., Tittel, J., & Steller, H. (1999).
HAC-1, a Drosophila homolog of APAF-1 and CED-4 functions in developmental and radiation-induced apoptosis. Molecular cell, 4(5), 745-55. [PubMed:10619022] [WorldCat] [DOI] - ↑
Kanuka, H., Sawamoto, K., Inohara, N., Matsuno, K., Okano, H., & Miura, M. (1999).
Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Molecular cell, 4(5), 757-69. [PubMed:10619023] [WorldCat] [DOI] - ↑
Riedl, S.J., & Salvesen, G.S. (2007).
The apoptosome: signalling platform of cell death. Nature reviews. Molecular cell biology, 8(5), 405-13. [PubMed:17377525] [WorldCat] [DOI] - ↑
Cheng, T.C., Hong, C., Akey, I.V., Yuan, S., & Akey, C.W. (2016).
A near atomic structure of the active human apoptosome. eLife, 5. [PubMed:27697150] [PMC] [WorldCat] [DOI] - ↑
Dorstyn, L., Akey, C.W., & Kumar, S. (2018).
New insights into apoptosome structure and function. Cell death and differentiation, 25(7), 1194-1208. [PubMed:29765111] [PMC] [WorldCat] [DOI] - ↑
Wright, K.M., Linhoff, M.W., Potts, P.R., & Deshmukh, M. (2004).
Decreased apoptosome activity with neuronal differentiation sets the threshold for strict IAP regulation of apoptosis. The Journal of cell biology, 167(2), 303-13. [PubMed:15504912] [PMC] [WorldCat] [DOI] - ↑
Johnson, C.E., Huang, Y.Y., Parrish, A.B., Smith, M.I., Vaughn, A.E., Zhang, Q., ..., & Deshmukh, M. (2007).
Differential Apaf-1 levels allow cytochrome c to induce apoptosis in brain tumors but not in normal neural tissues. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20820-5. [PubMed:18093951] [PMC] [WorldCat] [DOI] - ↑
Fortin, A., Cregan, S.P., MacLaurin, J.G., Kushwaha, N., Hickman, E.S., Thompson, C.S., ..., & Slack, R.S. (2001).
APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. The Journal of cell biology, 155(2), 207-16. [PubMed:11591730] [PMC] [WorldCat] [DOI] - ↑
Moroni, M.C., Hickman, E.S., Lazzerini Denchi, E., Caprara, G., Colli, E., Cecconi, F., ..., & Helin, K. (2001).
Apaf-1 is a transcriptional target for E2F and p53. Nature cell biology, 3(6), 552-8. [PubMed:11389439] [WorldCat] [DOI] - ↑
Coldwell, M.J., Mitchell, S.A., Stoneley, M., MacFarlane, M., & Willis, A.E. (2000).
Initiation of Apaf-1 translation by internal ribosome entry. Oncogene, 19(7), 899-905. [PubMed:10702798] [WorldCat] [DOI] - ↑
Hausmann, G., O'Reilly, L.A., van Driel, R., Beaumont, J.G., Strasser, A., Adams, J.M., & Huang, D.C. (2000).
Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bcl-x(L). The Journal of cell biology, 149(3), 623-34. [PubMed:10791976] [PMC] [WorldCat] [DOI] - ↑
Sun, Y., Orrenius, S., Pervaiz, S., & Fadeel, B. (2005).
Plasma membrane sequestration of apoptotic protease-activating factor-1 in human B-lymphoma cells: a novel mechanism of chemoresistance. Blood, 105(10), 4070-7. [PubMed:15692060] [WorldCat] [DOI] - ↑
Yuan, S., Yu, X., Topf, M., Ludtke, S.J., Wang, X., & Akey, C.W. (2010).
Structure of an apoptosome-procaspase-9 CARD complex. Structure (London, England : 1993), 18(5), 571-83. [PubMed:20462491] [PMC] [WorldCat] [DOI] - ↑
Hu, Q., Wu, D., Chen, W., Yan, Z., Yan, C., He, T., ..., & Shi, Y. (2014).
Molecular determinants of caspase-9 activation by the Apaf-1 apoptosome. Proceedings of the National Academy of Sciences of the United States of America, 111(46), 16254-61. [PubMed:25313070] [PMC] [WorldCat] [DOI] - ↑
Xu, W., Che, Y., Zhang, Q., Huang, H., Ding, C., Wang, Y., ..., & Hao, H. (2021).
Apaf-1 Pyroptosome Senses Mitochondrial Permeability Transition. Cell metabolism, 33(2), 424-436.e10. [PubMed:33308446] [WorldCat] [DOI] - ↑
Yuan, S., Yu, X., Topf, M., Dorstyn, L., Kumar, S., Ludtke, S.J., & Akey, C.W. (2011).
Structure of the Drosophila apoptosome at 6.9 å resolution. Structure (London, England : 1993), 19(1), 128-40. [PubMed:21220123] [PMC] [WorldCat] [DOI] - ↑
Dorstyn, L., Mills, K., Lazebnik, Y., & Kumar, S. (2004).
The two cytochrome c species, DC3 and DC4, are not required for caspase activation and apoptosis in Drosophila cells. The Journal of cell biology, 167(3), 405-10. [PubMed:15533997] [PMC] [WorldCat] [DOI] - ↑
Dorstyn, L., Read, S., Cakouros, D., Huh, J.R., Hay, B.A., & Kumar, S. (2002).
The role of cytochrome c in caspase activation in Drosophila melanogaster cells. The Journal of cell biology, 156(6), 1089-98. [PubMed:11901173] [PMC] [WorldCat] [DOI] - ↑
Yu, X., Wang, L., Acehan, D., Wang, X., & Akey, C.W. (2006).
Three-dimensional structure of a double apoptosome formed by the Drosophila Apaf-1 related killer. Journal of molecular biology, 355(3), 577-89. [PubMed:16310803] [WorldCat] [DOI] - ↑
Tian, L., Li, Y., & Shi, Y. (2024).
Dark and Dronc activation in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 121(9), e2312784121. [PubMed:38381783] [PMC] [WorldCat] [DOI] - ↑
Qi, S., Pang, Y., Hu, Q., Liu, Q., Li, H., Zhou, Y., ..., & Shi, Y. (2010).
Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4. Cell, 141(3), 446-57. [PubMed:20434985] [WorldCat] [DOI] - ↑
Yoshida, H., Kong, Y.Y., Yoshida, R., Elia, A.J., Hakem, A., Hakem, R., ..., & Mak, T.W. (1998).
Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell, 94(6), 739-50. [PubMed:9753321] [WorldCat] [DOI] - ↑
Fadeel, B., Ottosson, A., & Pervaiz, S. (2008).
Big wheel keeps on turning: apoptosome regulation and its role in chemoresistance. Cell death and differentiation, 15(3), 443-52. [PubMed:17975549] [WorldCat] [DOI] - ↑
Soengas, M.S., Capodieci, P., Polsky, D., Mora, J., Esteller, M., Opitz-Araya, X., ..., & Lowe, S.W. (2001).
Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature, 409(6817), 207-11. [PubMed:11196646] [WorldCat] [DOI]