「アミロイドーシス」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
21行目: 21行目:


===限局性アミロイドーシス===
===限局性アミロイドーシス===
 特定の臓器に限局して沈着を認める場合は限局性アミロイドーシスとなる。臓器に応じて分類され、脳アミロイドーシス<ref><pubmed> 22482447 </pubmed></ref>としては[[アルツハイマー病]]や脳血管アミロイドアンギオパチーで蓄積が見られるアミロイドβタンパク質(Aβ)の他、シスタチンCの遺伝子変異<ref><pubmed> 2900981 </pubmed></ref>がアイスランド型遺伝性アミロイド性脳出血で見出されている。また[[wikipedia:ja:プリオン|プリオンタンパク質]]の蓄積、沈着はクロイツフェルト・ヤコブ病やゲルストマン・ストロイスラー・シャインカー症候群などのプリオン病患者脳で報告されている。さらにBRI2遺伝子の変異によって生じるアミロイドペプチドABri、ADanはそれぞれBritish型、Danish型家族性認知症患者脳において蓄積している<ref><pubmed> 19072909 </pubmed></ref>。BRI2はその最C末端部がFurinによって切断され分泌されているが、野生型ペプチドには凝集性が認められない。しかし終止コドン近傍の遺伝子変異により野生型よりも僅かに長く、凝集性の高いペプチドが分泌され、これらがアミロイドとして脳実質に蓄積する。
 特定の臓器に限局して沈着を認める場合は限局性アミロイドーシスとなる。臓器に応じて分類され、脳アミロイドーシス<ref><pubmed> 22482447 </pubmed></ref>としては[[アルツハイマー病]]や脳血管アミロイドアンギオパチーで蓄積が見られる[[アミロイドβタンパク質]](Aβ)の他、シスタチンCの遺伝子変異<ref><pubmed> 2900981 </pubmed></ref>がアイスランド型遺伝性アミロイド性脳出血で見出されている。また[[wikipedia:ja:プリオン|プリオンタンパク質]]の蓄積、沈着はクロイツフェルト・ヤコブ病やゲルストマン・ストロイスラー・シャインカー症候群などのプリオン病患者脳で報告されている。さらにBRI2遺伝子の変異によって生じるアミロイドペプチドABri、ADanはそれぞれBritish型、Danish型家族性認知症患者脳において蓄積している<ref><pubmed> 19072909 </pubmed></ref>。BRI2はその最C末端部がFurinによって切断され分泌されているが、野生型ペプチドには凝集性が認められない。しかし終止コドン近傍の遺伝子変異により野生型よりも僅かに長く、凝集性の高いペプチドが分泌され、これらがアミロイドとして脳実質に蓄積する。


 その他の限局性アミロイドーシスとしては、内分泌アミロイドーシスのアミロイドタンパク質としてはカルシトニン、アミリン、インスリン、心房ナトリウム利尿ペプチドが同定されており、主にこれらのホルモンを分泌する細胞由来の腫瘍内で蓄積・沈着が観察される。また皮膚アミロイドーシスとしてはケラチンが、限局性結節性アミロイドーシスはアミロイドALがアミロイドタンパク質として蓄積することが報告されている。
 その他の限局性アミロイドーシスとしては、内分泌アミロイドーシスのアミロイドタンパク質としてはカルシトニン、アミリン、インスリン、心房ナトリウム利尿ペプチドが同定されており、主にこれらのホルモンを分泌する細胞由来の腫瘍内で蓄積・沈着が観察される。また皮膚アミロイドーシスとしてはケラチンが、限局性結節性アミロイドーシスはアミロイドALがアミロイドタンパク質として蓄積することが報告されている。


==アミロイドの構造と線維形成過程==
==アミロイドの構造と線維形成過程==
 各アミロイドタンパク質[[Image:TTfig4.PNG|thumb|350px|'''図1.クロスβ構造'''<br>トランスサイレチン部分ペプチドからなるクロスβ構造。PDB ID: 2M5N]]には一定の共通したアミノ酸配列や構造は見られないが、アミロイド線維になると共通してクロスβ構造と呼ばれる形態をとっている<ref><pubmed> 17468747 </pubmed></ref><ref><pubmed> 21456964 </pubmed></ref><ref><pubmed> 23513222 </pubmed></ref>。これはアミロイド線維を構成するポリペプチド鎖が線維軸と垂直方向にβストランドとなり、かつ線維軸方向にβシート構造をとっているものである。このような構造学的特徴はイメージング技術に応用されつつあり、Aβアミロイドに特異的に結合する低分子化合物を利用したアミロイドPETスキャンが可能となった<ref><pubmed> 14991808 </pubmed></ref><ref><pubmed> 21245183 </pubmed></ref>。
 各アミロイドタンパク質[[Image:TTfig4.PNG|thumb|350px|'''図1.クロスβ構造'''<br>トランスサイレチン部分ペプチドからなるクロスβ構造。PDB ID: 2M5N]]には一定の共通したアミノ酸配列や構造は見られないが、アミロイド線維になると共通してクロスβ構造と呼ばれる形態をとっている<ref><pubmed> 17468747 </pubmed></ref><ref><pubmed> 21456964 </pubmed></ref><ref><pubmed> 23513222 </pubmed></ref>。これはアミロイド線維を構成するポリペプチド鎖が線維軸と垂直方向にβストランドとなり、かつ線維軸方向にβシート構造をとっているものである。このような構造学的特徴はイメージング技術に応用されつつあり、[http://bsd.neuroinf.jp/wiki/アミロイドβタンパク質 Aβ]線維に特異的に結合する低分子化合物を利用したアミロイドPETスキャンが可能となった<ref><pubmed> 14991808 </pubmed></ref><ref><pubmed> 21245183 </pubmed></ref>。


 アミロイド線維形成過程では、多くの場合正常なフォールディングをうけているアミロイドタンパク質が何らかの理由で一旦部分変性し、会合することが必要である。また線維形成過程はその鋳型となるシード(種、核)の形成を契機として急速に進んでいくことが示されている<ref><pubmed> 22885025 </pubmed></ref>。すなわち、このシードの両端の末端にアミロイドタンパク質が結合して線維が伸長していくと考えられている。
 アミロイド線維形成過程では、多くの場合正常なフォールディングをうけているアミロイドタンパク質が何らかの理由で一旦部分変性し、会合することが必要である。また線維形成過程はその鋳型となるシード(種、核)の形成を契機として急速に進んでいくことが示されている<ref><pubmed> 22885025 </pubmed></ref>。すなわち、このシードの両端の末端にアミロイドタンパク質が結合して線維が伸長していくと考えられている。
32行目: 32行目:
 このようなシード依存性伸長反応モデルは、プリオンタンパク質が示す伝播能力とも関連していると考えられている。すなわち、一旦異常構造をとったタンパク質がシードとなり、別の個体におけるアミロイドタンパク質の構造及び性質を変化させていくというモデルである<ref><pubmed> 8513491 </pubmed></ref>[[Image:TTfig6.png|thumb|350px|'''図2.アミロイド線維形成過程'''<br>アミロイド線維形成過程におけるシードの役割]]。またシードへの組み込みはアミロイドタンパク質が同様の構造を取りうるかどうかに依存する。プリオンの感染性にはごく僅かなアミノ酸の違いに起因する「種の壁」が存在するが、この現象も一次配列の違いに依存する各種のプリオンが形成するシード構造の違いによって説明できる。
 このようなシード依存性伸長反応モデルは、プリオンタンパク質が示す伝播能力とも関連していると考えられている。すなわち、一旦異常構造をとったタンパク質がシードとなり、別の個体におけるアミロイドタンパク質の構造及び性質を変化させていくというモデルである<ref><pubmed> 8513491 </pubmed></ref>[[Image:TTfig6.png|thumb|350px|'''図2.アミロイド線維形成過程'''<br>アミロイド線維形成過程におけるシードの役割]]。またシードへの組み込みはアミロイドタンパク質が同様の構造を取りうるかどうかに依存する。プリオンの感染性にはごく僅かなアミノ酸の違いに起因する「種の壁」が存在するが、この現象も一次配列の違いに依存する各種のプリオンが形成するシード構造の違いによって説明できる。


 最近ではAβなどアミロイドを形成しうるアミロイドタンパク質がいずれもプリオン様の伝播能力を示す可能性が推測されている<ref><pubmed> 22660329 </pubmed></ref><ref><pubmed> 24005412 </pubmed></ref>。実際、全身性アミロイドーシスの一つであるAAアミロイドーシスはモデルマウスを用いた伝播実験が確認されているが、野生のチーターにおいてAAアミロイドーシス発症頻度が近年上昇していることが示されていた。そして興味深いことに、AAアミロイドーシスを発症した個体の糞に伝播性が極めて高いアミロイドA線維が含まれていることが明らかとなった<ref><pubmed> 18474855 </pubmed></ref>。
 最近ではアミロイドを形成しうるアミロイドタンパク質がいずれもプリオン様の伝播能力を示す可能性が推測されている<ref><pubmed> 22660329 </pubmed></ref><ref><pubmed> 24005412 </pubmed></ref>。実際、全身性アミロイドーシスの一つであるAAアミロイドーシスはモデルマウスを用いた伝播実験が確認されているが、野生のチーターにおいてAAアミロイドーシス発症頻度が近年上昇していることが示されていた。そして興味深いことに、AAアミロイドーシスを発症した個体の糞に伝播性が極めて高いアミロイドA線維が含まれていることが明らかとなった<ref><pubmed> 18474855 </pubmed></ref>。


 糞便を介したアミロイドーシス伝播は、野生動物におけるプリオン病(羊におけるスクレイピー、鹿におけるChronic wasting disease)の水平伝播メカニズムを説明できるものとして注目を集めている。特に末梢神経やリンパ節を介したプリオンの伝播に関しては、食物摂取などを介した末梢組織から生じうる限局性アミロイドーシスの発症機構を担っている可能性がある<ref><pubmed> 24189576 </pubmed></ref>。またAβについても、アルツハイマー病モデルマウスの腹腔内にAβ線維を注入すると大脳皮質でのAβアミロイドの沈着が亢進することも示されている<ref><pubmed> 20966215 </pubmed></ref>。
 糞便を介したアミロイドーシス伝播は、野生動物におけるプリオン病(羊におけるスクレイピー、鹿におけるChronic wasting disease)の水平伝播メカニズムを説明できるものとして注目を集めている。特に末梢神経やリンパ節を介したプリオンの伝播に関しては、食物摂取などを介した末梢組織から生じうる限局性アミロイドーシスの発症機構を担っている可能性がある<ref><pubmed> 24189576 </pubmed></ref>。また[http://bsd.neuroinf.jp/wiki/アミロイドβタンパク質 Aβ]についても、アルツハイマー病モデルマウスの腹腔内に[http://bsd.neuroinf.jp/wiki/アミロイドβタンパク質 Aβ]線維を注入すると大脳皮質での[http://bsd.neuroinf.jp/wiki/アミロイドβタンパク質 Aβ]の沈着が亢進することも示されている<ref><pubmed> 20966215 </pubmed></ref>。


 このようなタンパク質凝集物の細胞間伝播という概念は必ずしもアミロイドの形成には依存しておらず、凝集して線維を形成するタンパク質に普遍的に観察される可能性があり、最近では様々な神経変性疾患において細胞内に蓄積するタンパク質(タウ、シヌクレイン、TDP-43など)においても伝播能力の存在が確認されつつある<ref><pubmed> 24005412 </pubmed></ref>。また酵母などにおいてはプリオン様タンパク性因子による形質転換が報告されており、タンパク質の構造変化に依存した形質の伝播様式として注目されている<ref><pubmed> 23379365 </pubmed></ref>。
 このようなタンパク質凝集物の細胞間伝播という概念は必ずしもアミロイドの形成には依存しておらず、凝集して線維を形成するタンパク質に普遍的に観察される可能性があり、最近では様々な神経変性疾患において細胞内に蓄積するタンパク質(タウ、シヌクレイン、TDP-43など)においても伝播能力の存在が確認されつつある<ref><pubmed> 24005412 </pubmed></ref>。また酵母などにおいてはプリオン様タンパク性因子による形質転換が報告されており、タンパク質の構造変化に依存した形質の伝播様式として注目されている<ref><pubmed> 23379365 </pubmed></ref>。


 一方、アルツハイマー病患者脳から得られたAβ線維の構造解析[[Image:TTfig5.PNG|thumb|350px|'''図3.アルツハイマー病患者脳由来のAβ線維構造'''<br>患者脳由来アミロイドから伸長したAβの分子構造。PDB ID: 2M4J]]がなされ、<i>in vitro</i>で凝集させた構造とは異なる凝集形態を示していたことから、<i>in vivo</i>における凝集プロセスの違いが指摘されており<ref><pubmed> 24034249 </pubmed></ref>、伝播メカニズムとの関係の解明が待たれている。
 一方、アルツハイマー病患者脳から得られた[http://bsd.neuroinf.jp/wiki/アミロイドβタンパク質 Aβ]線維の構造解析[[Image:TTfig5.PNG|thumb|350px|'''図3.アルツハイマー病患者脳由来のAβ線維構造'''<br>患者脳由来アミロイドから伸長した[[アミロイドβタンパク質]]の分子構造。PDB ID: 2M4J]]がなされ、<i>in vitro</i>で凝集させた構造とは異なる凝集形態を示していたことから、<i>in vivo</i>における凝集プロセスの違いが指摘されており<ref><pubmed> 24034249 </pubmed></ref>、伝播メカニズムとの関係の解明が待たれている。


==アミロイドによる細胞毒性==
==アミロイドによる細胞毒性==
 アミロイド線維が発揮する細胞障害および毒性はアミロイドーシスにおける臓器不全の基本的病態と言える。アミロイド沈着後に生じる疾患プロセスを抑制する治療薬の開発のためにも、その理解は必須である。しかしアミロイドタンパク質のどのような構造、分子状態が毒性を発揮するのかについては未だ明確ではない。近年ではAβとFAD変異がもたらす分子病態の解析から、アミロイド線維そのものではなく、その中間体となるオリゴマー<ref><pubmed> 12702875 </pubmed></ref>に起因しているというオリゴマー仮説が提唱されている。
 アミロイド線維が発揮する細胞障害および毒性はアミロイドーシスにおける臓器不全の基本的病態と言える。アミロイド沈着後に生じる疾患プロセスを抑制する治療薬の開発のためにも、その理解は必須である。しかしアミロイドタンパク質のどのような構造、分子状態が毒性を発揮するのかについては未だ明確ではない。近年では[http://bsd.neuroinf.jp/wiki/アミロイドβタンパク質 Aβ]とFAD変異がもたらす分子病態の解析から、アミロイド線維そのものではなく、その中間体となるオリゴマー<ref><pubmed> 12702875 </pubmed></ref>に起因しているというオリゴマー仮説が提唱されている。


 このアミロイドタンパク質の凝集物がどのように細胞傷害を惹起しているか、という点については、脂質二重膜の障害、酸化的ストレスや小胞体ストレスの惹起、ミトコンドリア障害などが想定されている<ref><pubmed> 23820032 </pubmed></ref>。興味深いことに、全く異なるアミロイドタンパク質であるAβとADanが脳実質に蓄積するそれぞれの疾患モデルマウスを、神経障害と関連するtauトランスジェニックマウスと交配すると、いずれの場合もtau病理が亢進されることが示された<ref><pubmed> 20385796 </pubmed></ref>。これは少なくとも大脳皮質に沈着するアミロイドが示す神経細胞傷害プロセスの下流には共通性があることを示唆している。すなわち、アミロイドタンパク質の種類を問わず、どのような線維がどの細胞や臓器に沈着するかによって最終的にアミロイドーシスにおける病態が決定する可能性が考えられている。またAβが細胞外から神経細胞毒性を呈するために毒性受容体が想定さられており、NMDA型およびAMPA型グルタミン酸受容体、α7ニコチン性アセチルコリン受容体、インスリン受容体、RAGE、プリオンタンパク質やEphB2、LilrB2などがその候補として挙げられている。
 このアミロイドタンパク質の凝集物がどのように細胞傷害を惹起しているか、という点については、脂質二重膜の障害、酸化的ストレスや小胞体ストレスの惹起、ミトコンドリア障害などが想定されている<ref><pubmed> 23820032 </pubmed></ref>。興味深いことに、全く異なるアミロイド原性タンパク質である[http://bsd.neuroinf.jp/wiki/アミロイドβタンパク質 Aβ]とADanが脳実質に蓄積するそれぞれの疾患モデルマウスを、神経障害と関連するtauトランスジェニックマウスと交配すると、いずれの場合もtau病理が亢進されることが示された<ref><pubmed> 20385796 </pubmed></ref>。これは少なくとも大脳皮質に沈着するアミロイドが示す神経細胞傷害プロセスの下流には共通性があることを示唆している。すなわち、アミロイド原性タンパク質の種類を問わず、どのような線維がどの細胞や臓器に沈着するかによって最終的にアミロイドーシスにおける病態が決定する可能性が考えられている。また[http://bsd.neuroinf.jp/wiki/アミロイドβタンパク質 Aβ]が細胞外から神経細胞毒性を呈するために毒性受容体が想定さられており、NMDA型およびAMPA型グルタミン酸受容体、α7ニコチン性アセチルコリン受容体、インスリン受容体、RAGE、プリオンタンパク質やEphB2、LilrB2などがその候補として挙げられている。


==参考文献==
==参考文献==
<references/>
<references/>
53

回編集